Extended RE’s

UNIX pioneered the use of additional operators
and notation for RE’s:

e FE?=0o0r1 occurrences of £ = ¢+ E.
e FET =1 or more occurrences of £ = EE*.

e Character classes [a — zGX] = the union of
all (ASCII) characters from a to z, plus the
characters G and X, for example.

Algebraic Laws for RE’s

If two expressions E and F' have no variables, then
FE = F means that L(E) = L(F) (not that F and
F are identical expressions).

e Example: 1t =11*.

If £ and F are RE’s with variables, then £ =

F (F is equivalent {0 F') means that whatever
languages we substitute for the variables (provided
we substitute the same language everywhere the
same variable appears), the resulting expressions
denote the same language.

e Example: RT = RR*.

With two notable exceptions, we can think of
union (+) as if it were addition with @ in place of
the identity 0, and concatenation, with € in place
of the identity 1, as multiplication.

e + and concatenation are both associative.
e + is commutative.

e  Laws of the identities hold for both.

e () is the annihilator for concatenation.

e  The exceptions:

1. Concatenation is not commutative: ab #

ba.

2. 4+ is idempotent: E + F = F for any
expression F.

Checking a Law

Suppose we are told that the law (R + S)* =
(R*S*)* holds for RE’s. How would we check that

this claim 1s true?

e  Think of R and S as if they were single
symbols, rather than placeholders for
languages, i.e., R = {0} and S = {1}.

0 Then the left side is clearly “any sequence
of 0’s and 1’s.



0 The right side also denotes any string
of 0’s and 1’s, since 0 and 1 are each in
L(0"17).

e That test is necessary (i.e., if the test fails,
then the law does not hold.

O  We have particular languages that serve
as a counterexample.

e  But is it sufficient (if the test succeeds, the
law holds)?

Proof of Sufficiency

The book has a fairly simple argument for why,
when the “concretized” expressions denote the
same language, then the languages we get by
substituting any languages for the variables are
also the same.

e  But if you think that’s obvious, the book also
has an example of “RE’s with intersection”
where the same statement is false.

o Also —1s it clear that we can tell whether
two RE’s without variables denote the same
language?

O Algorithm to do so will be covered.

Closure Properties

e Not every language is a regular language.

e  However, there are some rules that say “if
these languages are regular, so is this one
derived from them.

e  There is also a powerful technique — the
pumping lemma — that helps us prove a
language not to be regular.

e Key tool: Since we know RE’s, DFA’s,
NFA’s, e-NFA’s all define exactly the
regular languages, we can use whichever
representation suits us when proving
something about a regular language.

Pumping Lemma

If L is a regular language, then there exists a
constant n such that every string w in L, of length
n or more, can we written as w = xyz, where:

1. 0<lyl

2. eyl < n.



For all i > 0, wy'z is also in L.
0 Note y* = y repeated i times; y° = ¢.

The alternating quantifiers in the logical
statement of the PL makes it very complex:

(VL)(3Fn)(Yw) (3w, y, 2)(Vi).

Proof of Pumping Lemma

e  Since we claim L is regular, there must be a
DFA A such that L = L(A).

e Let A have n states; choose this n for the
pumping lemma.

e Let w be a string of length > n in L, say w =
a1as - - - Uy, where m > n.

e Let g; be the state A is in after reading the
first ¢ symbols of w.

O qo = start state, ¢1 = 6(qo,a1), g2 =
8(qo, a1az), ete.

e  Since there are only n different states, two of
90,41, - - -, ¢n must be the same; say ¢; = ¢;,
where 0 <i < j <n.

o Letx = a1 a5y = @iq1---a5; 2 =
aj-l—l BRI Foegy

e  Then by repeating the loop from ¢; to ¢; with
label a;11 - - -a; zero times once, or more, we
can show that xy’z is accepted by A.

PL Use

We use the PL to show a language L is not

regular.

e  Start by assuming L is regular.

e  Then there must be some n that serves as the
PL constant.

0 We may no know what n is, but we can
work the rest of the “game” with n as a
parameter.

e  We choose some w that 1s known to be in L.
00 Typically, w depends on n.

e  Applying the PL, we know w can be broken
into zyz, satisfying the PL properties.

0 Again, we may not know how to break w,
SO we use z,Yy, z as parameters.

e We derive a contradiction by picking ¢ (which

might depend on n, #, y, and/or z) such that
xy'z 1s notin L.



Example

Consider the set of strings of 0’s whose length is a
perfect square; formally L = {0° | i is a square}.

e  We claim L is not regular.

e  Suppose L is regular. Then there is a constant
n satisfying the PL conditions.

e  Consider w = 0”2, which is surely in L.

e Then w = zyz, where |zy| < n and y # e.

e By PL, zyyz isin L. But the length of zyyz
is greater than n? and no greater than n? 4 n.

e  However, the next perfect square after n? is
(n+1)2=n?+2n+1.

e  Thus, zyyz 1s not of square length and is not

n L.

e  Since we have derived a contradiction, the
only unproved assumption — that L is
regular — must be at fault, and we have a
“proof by contradiction” that L is not regular.

Closure Properties

Certain operations on regular languages are
guaranteed to produce regular languages.

e FExample: the union of regular languages is
regular; start with RE’s; and apply + to get
an RE for the union.

Substitution

e  Take a regular language L over some alphabet

.
e For each a in X, let L, be a regular language.

e Let s be the substitution defined by s(a) = L,
for each a.

O Extend s to strings by s(ajaz---ap) =
s(ay)s(az) - - s(ap); i.e., concatenate the
languages Lo, Lg, - L, -

O Extend s to languages by s(M) =Uy in m
s(w).
e  Then s(L) is regular.

Proof That Substitution of Regular
Languages Into a Regular Language is
Regular

o Let R be aregular expression for language L.



o Let R, be a regular expression for language
s(a) = Ly, for all symbols a in X.

e Construct a RE F for s(L) by starting with R
and replacing each symbol a by the RE L,.

e  Proof that L(E) = s(L) is an induction on the
height of (the expression tree for) RE R.

Basis: R is a single symbol, a. Then £ = R,,
L ={a}, and s(L) = s({a}) = L(R,).

e Cases where R is ¢ or ) easy.

Induction: There are three cases, depending on
whether R = Ry + R2, R = R1R», or R = Rj.
We’ll do only R = Ry Rs.

e L = LiLy, where 1 = L(R;) and Ly =
L(Ry).

e Let Fy be Ry, with each a replaced by R,
and F5 similarly.

e By the IH, L(E;) = s(L1) and L(F2) = s(L2).
e Thus, L(E) = s(L1)s(La) = s(L).

Applications of the Substitution Theorem

e If Ly and Ls are regular, so is Ly Ls.

O TLet s(a) = Ly and s(b) = Ls. Substitute
into the regular language {ab}.

e Sois LqyULs.

O  Substitute into {a, b}.
o Ditto L7.

O  Substitute into L(a*).

e  (Closure under homomorphism = substitution
of one string for each symbol.

O Special case of a substitution.

Example: Homomorphism

Let I = L(0"1%), and let A be a homomorphism
defined by h(0) = aa and h(1) = ¢.

e Then h(L) = L(aa)*) = all strings of an even
number of a’s.

Closure Under Inverse Homomorphism

o A7 HL)={w|h(w)isin L}.



e  See argument in course reader. Briefly:

O Given homomorphism h and regular
language L, start with a DFA A for L.

0 Construct DFA B for h=1(L), by having
B go from state ¢ to state p on input a if

5((], h(a)) = p.
Closure Under Reversal
e  The reverse of a string w = ayas---a, is
Gy -+ - G207
0 Denoted w.
O Note ¢ =¢.

e  The reverse of a language L is the set
containing the reverse of each string in L.

e If L is regular, so is L%.

O Proof: use RE’s, recursive reversal as in
course reader.



