

Extended RE's

UNIX pioneered the use of additional operators and notation for RE's:

- $E? = 0$ or 1 occurrences of $E = \epsilon + E$.
- $E^+ = 1$ or more occurrences of $E = EE^*$.
- *Character classes* $[a - zGX] =$ the union of all (ASCII) characters from a to z , plus the characters G and X , for example.

Algebraic Laws for RE's

If two expressions E and F have no variables, then $E = F$ means that $L(E) = L(F)$ (not that E and F are identical expressions).

- Example: $1^+ = 11^*$.

If E and F are RE's with variables, then $E = F$ (E is *equivalent to* F) means that whatever languages we substitute for the variables (provided we substitute the same language everywhere the same variable appears), the resulting expressions denote the same language.

- Example: $R^+ = RR^*$.

With two notable exceptions, we can think of union (+) as if it were addition with \emptyset in place of the identity 0, and concatenation, with ϵ in place of the identity 1, as multiplication.

- + and concatenation are both associative.
- + is commutative.
- Laws of the identities hold for both.
- \emptyset is the annihilator for concatenation.
- The exceptions:
 1. Concatenation is *not* commutative: $\mathbf{ab} \neq \mathbf{ba}$.
 2. + is *idempotent*: $E + E = E$ for any expression E .

Checking a Law

Suppose we are told that the law $(R + S)^* = (R^*S^*)^*$ holds for RE's. How would we check that this claim is true?

- Think of R and S as if they were single symbols, rather than placeholders for languages, i.e., $R = \{0\}$ and $S = \{1\}$.
 - ◆ Then the left side is clearly “any sequence of 0's and 1's.

- ◆ The right side also denotes any string of 0's and 1's, since 0 and 1 are each in $L(0^*1^*)$.
- That test is *necessary* (i.e., if the test fails, then the law does not hold.
 - ◆ We have particular languages that serve as a counterexample.
- But is it *sufficient* (if the test succeeds, the law holds)?

Proof of Sufficiency

The book has a fairly simple argument for why, when the “concretized” expressions denote the same language, then the languages we get by substituting any languages for the variables are also the same.

- But if you think that's obvious, the book also has an example of “RE's with intersection” where the same statement is false.
- Also — is it clear that we can tell whether two RE's without variables denote the same language?
 - ◆ Algorithm to do so will be covered.

Closure Properties

- Not every language is a regular language.
- However, there are some rules that say “if these languages are regular, so is this one derived from them.
- There is also a powerful technique — the pumping lemma — that helps us prove a language *not* to be regular.
- Key tool: Since we know RE's, DFA's, NFA's, ϵ -NFA's all define exactly the regular languages, we can use whichever representation suits us when proving something about a regular language.

Pumping Lemma

If L is a regular language, then there exists a constant n such that every string w in L , of length n or more, can be written as $w = xyz$, where:

1. $0 < |y|$.
2. $|xy| \leq n$.

- 3. For all $i \geq 0$, $wy^i z$ is also in L .
 - ◆ Note $y^i = y$ repeated i times; $y^0 = \epsilon$.
- The alternating quantifiers in the logical statement of the PL makes it very complex:
 $(\forall L)(\exists n)(\forall w)(\exists x, y, z)(\forall i)$.

Proof of Pumping Lemma

- Since we claim L is regular, there must be a DFA A such that $L = L(A)$.
- Let A have n states; choose this n for the pumping lemma.
- Let w be a string of length $\geq n$ in L , say $w = a_1 a_2 \cdots a_m$, where $m \geq n$.
- Let q_i be the state A is in after reading the first i symbols of w .
 - ◆ $q_0 = \text{start state}$, $q_1 = \delta(q_0, a_1)$, $q_2 = \delta(q_1, a_2)$, etc.
- Since there are only n different states, two of q_0, q_1, \dots, q_n must be the same; say $q_i = q_j$, where $0 \leq i < j \leq n$.
- Let $x = a_1 \cdots a_i$; $y = a_{i+1} \cdots a_j$; $z = a_{j+1} \cdots a_m$.
- Then by repeating the loop from q_i to q_i with label $a_{i+1} \cdots a_j$ zero times once, or more, we can show that $xy^i z$ is accepted by A .

PL Use

We use the PL to show a language L is *not* regular.

- Start by assuming L is regular.
- Then there must be some n that serves as the PL constant.
 - ◆ We may not know what n is, but we can work the rest of the “game” with n as a parameter.
- We choose some w that is known to be in L .
 - ◆ Typically, w depends on n .
- Applying the PL, we know w can be broken into xyz , satisfying the PL properties.
 - ◆ Again, we may not know how to break w , so we use x, y, z as parameters.
- We derive a contradiction by picking i (which might depend on n, x, y , and/or z) such that $xy^i z$ is *not* in L .

Example

Consider the set of strings of 0's whose length is a perfect square; formally $L = \{0^i \mid i \text{ is a square}\}$.

- We claim L is not regular.
- Suppose L is regular. Then there is a constant n satisfying the PL conditions.
- Consider $w = 0^{n^2}$, which is surely in L .
- Then $w = xyz$, where $|xy| \leq n$ and $y \neq \epsilon$.
- By PL, $xyyz$ is in L . But the length of $xyyz$ is greater than n^2 and no greater than $n^2 + n$.
- However, the next perfect square after n^2 is $(n+1)^2 = n^2 + 2n + 1$.
- Thus, $xyyz$ is not of square length and is not in L .
- Since we have derived a contradiction, the only unproved assumption — that L is regular — must be at fault, and we have a “proof by contradiction” that L is not regular.

Closure Properties

Certain operations on regular languages are guaranteed to produce regular languages.

- Example: the union of regular languages is regular; start with RE's, and apply $+$ to get an RE for the union.

Substitution

- Take a regular language L over some alphabet Σ .
- For each a in Σ , let L_a be a regular language.
- Let s be the *substitution* defined by $s(a) = L_a$ for each a .
 - ◆ Extend s to strings by $s(a_1 a_2 \cdots a_n) = s(a_1)s(a_2)\cdots s(a_n)$; i.e., concatenate the languages $L_{a_1} L_{a_2} \cdots L_{a_n}$.
 - ◆ Extend s to languages by $s(M) = \bigcup_{w \text{ in } M} s(w)$.
- Then $s(L)$ is regular.

Proof That Substitution of Regular Languages Into a Regular Language is Regular

- Let R be a regular expression for language L .

- Let R_a be a regular expression for language $s(a) = L_a$, for all symbols a in Σ .
- Construct a RE E for $s(L)$ by starting with R and replacing each symbol \mathbf{a} by the RE L_a .
- Proof that $L(E) = s(L)$ is an induction on the height of (the expression tree for) RE R .

Basis: R is a single symbol, \mathbf{a} . Then $E = R_a$, $L = \{a\}$, and $s(L) = s(\{a\}) = L(R_a)$.

- Cases where R is ϵ or \emptyset easy.

Induction: There are three cases, depending on whether $R = R_1 + R_2$, $R = R_1 R_2$, or $R = R_1^*$. We'll do only $R = R_1 R_2$.

- $L = L_1 L_2$, where $L_1 = L(R_1)$ and $L_2 = L(R_2)$.
- Let E_1 be R_1 , with each a replaced by R_a , and E_2 similarly.
- By the IH, $L(E_1) = s(L_1)$ and $L(E_2) = s(L_2)$.
- Thus, $L(E) = s(L_1)s(L_2) = s(L)$.

Applications of the Substitution Theorem

- If L_1 and L_2 are regular, so is $L_1 L_2$.
 - ◆ Let $s(a) = L_1$ and $s(b) = L_2$. Substitute into the regular language $\{ab\}$.
- So is $L_1 \cup L_2$.
 - ◆ Substitute into $\{a, b\}$.
- Ditto L_1^* .
 - ◆ Substitute into $L(\mathbf{a}^*)$.
- Closure under *homomorphism* = substitution of one string for each symbol.
 - ◆ Special case of a substitution.

Example: Homomorphism

Let $L = L(0^* 1^*)$, and let h be a homomorphism defined by $h(0) = aa$ and $h(1) = \epsilon$.

- Then $h(L) = L(\mathbf{a}\mathbf{a})^* =$ all strings of an even number of a 's.

Closure Under Inverse Homomorphism

- $h^{-1}(L) = \{w \mid h(w) \text{ is in } L\}$.

- See argument in course reader. Briefly:
 - ◆ Given homomorphism h and regular language L , start with a DFA A for L .
 - ◆ Construct DFA B for $h^{-1}(L)$, by having B go from state q to state p on input a if $\hat{\delta}(q, h(a)) = p$.

Closure Under Reversal

- The *reverse* of a string $w = a_1a_2 \cdots a_n$ is $a_n \cdots a_2a_1$.
 - ◆ Denoted w^R .
 - ◆ Note $\epsilon^R = \epsilon$.
- The reverse of a language L is the set containing the reverse of each string in L .
- If L is regular, so is L^R .
 - ◆ Proof: use RE's, recursive reversal as in course reader.