Formal Definition of Finite Automaton

1. Finite set of states, typically Q).
2. Alphabet of input symbols, typically X.

3. One state is the start/initial state, typically
qo-

4. Zero or more final/accepting states; the set is
typically F'.

5. A transition function, typically 6. This
function:

0 Takes a state and input symbol as
arguments.

0 Returns a state.

O One “rule” of 6 would be written
8(g,a) = p, where ¢ and p are states,
and a is an input symbol.

O Intuitively: if the FA is in state ¢, and
input a is received, then the FA goes to
state p (note: ¢ = p OK).

e A FA is represented as the five-tuple: A =
(Qa Ea 6a q0, F)

Example: Clamping Logic

We may think of an accepting state as representing
a “1” output and nonaccepting states as
representing “0” out.

A “clamping” circuit waits for a 1 input, and

forever after makes a 1 output. However, to avoid
clamping on spurious noise, we’ll design a FA that
waits for two 1’s in a row, and “clamps” only then.

In general, we may think of a state as representing
a summary of the history of what has been seen on
the input so far. The states we need are:

1. State qp, the start state, says that the most
recent input (if there was one) was not a 1,
and we have never seen two 1’s in a row.

2. State g1 says we have never seen 11, but the
previous input was 1.

3. State ¢s is the only accepting state; it says
that we have at some time seen 11.

L4 ThUS, A = ({QOaQ1aQZ}a{Oa1}a6a q0a{q2})a

where 6 is given by:



0 1

—qo | 9o q1
q1 | 90 42
*q2 | 92 42

e By marking the start state with — and
accepting states with %, the transition table
that defines é also specifies the entire FA.

Conventions

It helps if we can avoid mentioning the type of
every name by following some rules:

e Input symbols are a, b, etc., or digits.
e  Strings of input symbols are u,v,..., z.

e  States are ¢, p, etc.

Transition Diagram

A FA can be represented by a graph; nodes =
states; arc from ¢ to p is labeled by the set of
input symbols a such that §(¢q,a) = p.

e No arc if no such a.

e  Start state indicated by word “start” and an
arrow.

e  Accepting states get double circles.

Example

For the clamping FA:

Extension of § to Paths

Intuitively, a FA accepts a string w = ayas - - - a, if
there 1s a path in the transition diagram that:

1.  Begins at the start state,
2.  FEnds at an accepting states, and
3. Has sequence of labels aq,as,...,a,.

Formally, we extend transition function é to

8(¢, w), where w can be any string of input
symbols:



e Basis: 5((], €) = q (i.e., on no input, the FA
doesn’t go anywhere.

e Induction: 5((], wa) = 6(5((], w), a), where w is
a string, and a a single symbol (i.e., see where
the FA goes on w, then look for the transition
on the last symbol from that state).

e Important fact with a straightforward,
inductive proof: s really represents paths.
That is, if w = ajas-- - an, and 8§(p;, a;) = piy1
foralli =10,1,...,n— 1, then 5(p0,w) = pp.

Acceptance of Strings

ATFA A = (Q,X,8,q0, F) accepts string w if

8(go,w) isin F.

Language of a FA

FA A accepts the language L(A) = {w | é(qo, w) is
in F'}.

Aside: Type Errors

A major source of confusion when dealing with
automata (or mathematics in general) is making
“type errors.”

e Example: Don’t confuse A, a FA, 1.e., a
program, with L(A), which is of type “set of
strings.”

e Example: the start state ¢qq is of type “state,”
but the accepting states F' is of type “set of
states.”

e  Trickier example: Is a a symbol or a string of
length 17

O Answer: it depends on the context, e.g.,
is it used in é(q, a), where it is a symbol,
or 6(q,a), where it is a string?

Nondeterministic Finite Automata

Allow (deterministic) FA to have a choice of 0 or
more next states for each state-input pair.

e Important tool for designing string processors,
e.g., grep, lexical analyzers.

e But “imaginary,” in the sense that it has to be
implemented deterministically.
Example

In this somewhat contrived example, we shall
design an NFA to accept strings over alphabet
{1,2,3} such that the last symbol appears

3



previously, without any intervening higher symbol,

e.g., 11, ---21112, - --312123.

e  Trick: use start state to mean “I guess |
haven’t seen the symbol that matches the
ending symbol yet.

e  Three other states represent a guess that

the matching symbol has been seen, and
remembers what that symbol 1s.

Formal NFA
N =(Q,X,6,q0, F), where all is as DFA, but:

e b(q,a) is a set of states, rather than a single

state.

Extension to 6

e Basis: 5((], ¢) = {q}.

e Induction: Let:

O é(q,w) =A{p1,p2,-- -, Pr}

O é(pj,a)=S;fori=1,2... k.

Theng(q,wa):slUSzu...USk.
Language of an NFA

An NFA accepts w if any path from the start state
to an accepting state is labeled w. Formally:

o L(N)={w| (g0, w) N F #0}.
Subset Construction

e  For every NFA there is an equivalent (accepts
the same language) DFA.

e  But the DFA can have exponentially many
states.



Let N = (@n,X,6n,q0, Fn) be an NFA.
The equivalent DFA constructed by the subset
construction is D = (@p, X, ép, {qo}, Fp), where:

1. Qp=29v: ie. Qp is the set of all subsets of
An.

2.  Fy is the set of sets S in Qp such that S N
F£0.

6D({Q1aQ2a"'aqk}aa) = 6N(p1aa) U
Sn(p2,a)U---Ubn(pr,a).

e  Key theorem (induction on |w]|, proof in
book): ép({qo}, w) = én (g0, w).
e  Consequence: L(D) = L(N).

Example: Subset Construction From
Previous NFA

An important practical trick, used in lexical
analyzers and other text-processors is to ignore the
(often many) states that are not accessible from
the start state (i.e., no path leads there).

e  For the NFA example above, of the 32 possible
subsets, only 15 are accessible. Computing
transitions “on demand” gives the following
(SD .

1 2 3

— D | Pq pr ps
pq | pgt  pro ps
*pgt | pgt  pr o ps
pr|pgr prt ps
*prt | pqr  prt ps
ps | pgs prs pst
*pst | pgs prs psi
prs | pqrs prst pst
*prst | pqrs prst pst
pqs | pgst prs pst
*pqst | pgst prs pst
pqr | pqrt prt ps
*pqrt | pqrt prt ps
pqrs | pqrst prst pst
*pqrst | pgrst prst psi




