Independent Set Problem
Input: a graph G and a lower bound %.

Output: “yes” iff there are at least k
independent nodes of GG; i.e., nodes with no edges
interconnecting.

Reduction from: 3SAT.

e  C(Clearly, this problem is in A"P; just guess
k nodes and check that they have no edges
among them.

The Reduction
Take a 3-SAT instance such as (z+y+2)(Z+Z+w).

e  Create node [7, j] for the jth literal in the ith
clause.

O ¢ ranges from 1 to the number of
clauses — certainly O(n), where n = the
input length.

U j7=12 or3.

e FEdges among the three nodes with a common
¢ prevent more than one of them being chosen
in an independent set.

e FEdges between nodes for any literal and its
complement.

O 1In our little example: [1,1] and [2, 1] are
connected (z and z); [1, 3] and [2, 2] are
also connected (z and z).

e Pick £k = number of clauses.

Proof the Reduction is Correct

e  First, suppose we have a satisfying truth
assignment for the variables.

0 Pick one true literal from each clause
(there could be more, but not fewer).

0 The nodes corresponding to these literals
form an independent set of size k.

O Why? The only edges among them would
connect nodes for different clauses, and
these would have to go between a literal
and its complement, both of which could
not have been selected.



Now, suppose we have an independent set of
size k.

[0 This set cannot have more than one node
from any one clause.

0 This set cannot choose nodes
corresponding to a literal and its
complement.

0 Thus, it tells us a truth assignment for
enough of the variables that every clause
is made true.

Coping With Complexity

When faced with an NP-complete problem, there
are three things we can do:

1.

Approzimate. For example, do we need an
absolutely maximum-size independent set?

O Perhaps a greedy heuristic (grab any
node we see as long as 1t has no edges
connected 1t to those we’ve selected
already) will get an independent set that
is big enough?

Restrict. Do we really need to solve the
problem in all its generality? Or could a
special case that has a polynomial algorithm
serve our needs?

0 Example, while 3SAT is NP-complete, the
2SAT problem (clauses of 2 literals only)
has a subtle, linear-time algorithm.

Tough It Out. Sometimes we are only
interested in problem instances that are small
enough that the exponential growth doesn’t
overwhelm our resources.

0 Query optimization algorithms are like
that: everything is NP-complete, but
database queries tend to be very small.

O Traveling Salesman is an unusual NP-
complete problem because it is in
fact very easy to solve even 1000-city
problems. Thus, it is used by many
snake-oil salesmen to demonstrate that
their favorite algorithmic methodology
“beats” NP-completeness (e.g., Hopgood
with neural nets, Adelman with DNA
algorithms).

Out Beyond NP

There is no end to the number of complexity

classes that can be invented by mathematically

2



inclined academics desirous of gaining tenure.
Some of these are actually interesting.

Co-NP

A language/problem is in Co-NP if its complement
is in N'P.

o IfP=NP, then Co-NP = NP.

00 Why? because the complement of a
problem in P is surely in P, since we can
just complement the answer in one more
step.

e However, if P # NP, as we assume, then Co-
NP # NP is likely, although not certain.

e Apparent example: The complement of SAT
(i.e., all Boolean expressions that are not
satisfiable, plus the “garbage” that is not a
well-formed expression) appears not to be in

NP.

O While we can guess a satisfying truth
assignment and check that we guessed
right in polynomial time, there is no
way to “guess why there is no such
assignment.”

[0 Note that the nonsatisfiable expressions
are the negations of the tautologies
(expressions that are always true), so
tautology testing is another example of
a Co-NP problem that appears not to be
in NP.

PSPACE

A TM that uses no more than p(n) space on input
of length n, for some polynomial p, is said to be in

PSPACE.

e  You might think that it matters whether the
TM is deterministic or nondeterministic, but
it doesn’t! See below.

e A PSPACE TM can take exponential time
before accepting.

e  However, if it takes more than k”(") moves,
where k& = sum of the number of states and
tape symbols, then it has repeated an ID and
so has a shorter sequence of moves leading to
acceptance if it accepts at all.

Example

The tautology problem is in PSPACE.



e  Use linear space to enumerate all possible
truth assignments, one at a time (i.e., run a
counter in binary).

e  Check each assignment, say “no” if you find
one that doesn’t make the expression true,
and say “yes” if you reach the end.

PSPACE-complete Problems

While P C NP C PSPACE is obvious (remember
that PSPACE includes nondeterministic TM’s), it
is not even known whether P = PSPACE.

e  Say a problem L is PSPACE-complete if every
problem in PSPACE polynomial-#ime reduces
to L.

O Thus, if L is in P, then P = PSPACE; if
L is in AP, then NP = PSPACE.

Example

QBF (Quantified Boolean Formulas) is a PSPACE-

complete problem.
e Example of a QBF: (Va)(Jy)(zy + Ty).

0 This instance of QBF has answer “yes”
(true), because we can pick y to be the
complement of x.

Savitch’s Theorem: Equivalence of
Deterministic and Nondeterministic

PSPACE
Key ideas:

1. If a PSPACE NTM accepts, it does so within
kP gteps.

2. A simulating DTM uses a recursive algorithm

to answer questions of the form: “does 1D «
%

F ID G in at most 2! steps?”
e Basis: i =0. Checkifa=foralk S

e  Induction: For each possible 4 [ID of length
*
at most p(n)], recursively check if &« F = in at
. * .
most 2°~! moves and ¥ - £ in at most 2°71

moves.

O Return “yes” if any such v found; return
“no” if not.

0 You need only one “stack frame” of
length p(n) to generate and store each
possible v (use a counter in base k).



Clincher: We can limit the stack to p(n)log, k
recursive calls, taking a total of p?(n)log, k
space, a polynomial if p(n) is.
O Why? That is enough to answer the
*
question “does &« F [ in at most

gp(n)loga b — fp(n) 1 oves?”

O Let o be the initial ID, and (using
a counter) 8 be any of the possible
accepting ID’s of length p(n).

0 Remember, if acceptance occurs, kP(")
moves is enough.



