

### The Class of Languages $\mathcal{P}$

- If a (deterministic) TM  $M$  has some polynomial  $p(n)$  such that  $M$  never makes more than  $p(n)$  moves when presented with input of length  $n$ , then  $M$  is said to be a *polynomial-time TM*.
- $\mathcal{P}$  is the set of languages that are accepted by polynomial-time TM's.
- Equivalently,  $\mathcal{P}$  is the set of problems that can be solved by a real computer by a polynomial-time algorithm.
  - ◆ Why? Because while  $T(n)$  steps on a computer may become  $T^3(n)$  steps on a TM,  $T(n)$  cannot be a polynomial unless  $T^3(n)$  is.
  - ◆ Many familiar problems are in  $\mathcal{P}$ : graph reachability (transitive closure), matrix multiplication (is this matrix the product of these other two matrices?), etc.

### The Class of Languages $\mathcal{NP}$

- A nondeterministic TM that never makes more than  $p(n)$  moves in any sequence of choices for some polynomial  $p$ ) is said to be a *polynomial-time NTM*.
- $\mathcal{NP}$  is the set of languages that are accepted by polynomial-time NTM's.
- Many problems are in  $\mathcal{NP}$  but appear not to be in  $\mathcal{P}$ : TSP (is there a tour of all the nodes in a graph with total edge weight  $\leq k$ ?), SAT (does this Boolean expression have a satisfying assignment of its variables?), CLIQUE (does this graph have a set of  $k$  nodes with edges between every pair?).
- One of the great mathematical questions of our age: Is there anything in  $\mathcal{NP}$  that is not in  $\mathcal{P}$ ?

### NP-Complete Problems

If we can't resolve the " $\mathcal{P} = \mathcal{NP}$ " question, we can at least demonstrate that certain problems in  $\mathcal{NP}$  are "hardest," in the sense that if any one of them were in  $\mathcal{P}$ , then  $\mathcal{P} = \mathcal{NP}$ .

- Called *NP-complete* problems.
- Intellectual leverage: each NP-complete problem's apparent difficulty reinforces the belief that they are all hard.

## Method for Proving NP-complete Problems

- Polynomial-time reductions (PTR): take time that is some polynomial in the input size to convert instances of one problem to instances of another.
  - ◆ Of course, the same algorithm converts non-instances of one to non-instances of the other.
- If  $P_1$  PTR to  $P_2$ , and  $P_2$  is in  $\mathcal{P}$ , then so is  $P_1$ .
  - ◆ Why? Combine the PTR and  $P_2$  test to get a polynomial-time algorithm for  $P_1$ .
- Start by showing *every* problem in  $\mathcal{NP}$  has a PTR to SAT (= satisfiability of a Boolean formula).
  - ◆ Thus, if SAT is in  $\mathcal{P}$ , everything in  $\mathcal{NP}$  is in  $\mathcal{P}$ ; i.e.,  $\mathcal{P} = \mathcal{NP}$ !
- Then, more problems can be proven NP-complete by showing that SAT PTRs to them, directly, or indirectly.
  - ◆ Key point: the composition of any finite number of PTR's is a PTR.
- Don't forget that you also need to show the problem is in  $\mathcal{NP}$  (usually easy, but necessary).

### Reduction of Any $L$ in $\mathcal{NP}$ to SAT

Assume  $L = L(M)$  for some NTM  $M$  that is time-bounded by polynomial  $p(n)$ .

- Key idea: if  $w$ , of length  $n$ , is in  $L$ , then there is a sequence of  $p(n) + 1$  ID's, each of length  $p(n) + 1$ , that demonstrates acceptance of  $w$ .
  - ◆ Well not exactly: the accepting sequence might be shorter. If so, extend  $\vdash$  to allow  $\alpha \vdash \alpha$  if  $\alpha$  is an ID with an accepting state.
  - ◆ Still not exactly: some ID's will be shorter than  $p(n) + 1$  symbols. Pad those out with blanks.
- Now, we can imagine a square array of symbols  $X_{ij}$ , for  $i$  and  $j$  ranging from 0 to  $p(n)$ , where  $X_{ij}$  is the symbol in position  $j$  of the  $i$ th ID.

- Given string  $w$ , construct a Boolean expression that says “these  $X_{ij}$ ’s represent an accepting computation of  $w$ .
  - ◆ **Very Important:** The construction must be carried out in time polynomial in  $n = |w|$ . In fact, we need only  $O(1)$  work per  $X_{ij}$  [or  $O(p^2(n))$  total]
  - ◆ Another important principle: The output cannot be longer than the amount of time taken to generate it, so we are saying that the Boolean expression will have  $O(1)$  “stuff” per  $X_{ij}$ .
- The propositional variables in the desired expression are named  $y_{i,j,Y}$ , which we should interpret as an assertion that the symbol  $X_{ij}$  is  $Y$ .
- The desired expression  $E(w)$  is  $S \wedge M \wedge F =$  starts, moves, and finishes right.

### Starts Right

- $S$  is the AND of each of the proper variables:  

$$y_{0,0,q_0} \wedge y_{0,1,a_1} \wedge \cdots \wedge y_{0,n,a_n} \wedge y_{0,n+1,B} \wedge \cdots \wedge y_{0,p(n),B}$$
  - ◆ Here,  $q_0$  is the start state,  $w = a_1, \dots, a_n$ , and  $B$  is the blank.

### Moves Right

Key idea: the value of  $X_{i,j}$  depends only on the three symbols above it, to the northeast, and the northwest.

- However, since the components of a move (next state, new symbol, and head direction) must come from the same NTM choice, we need rules that say: when  $X_{i-1,j}$  is the state, then all three of  $X_{i,j-1}$ ,  $X_{i,j}$ , and  $X_{i,j+1}$  are determined from  $X_{i-1,j-1}$ ,  $X_{i-1,j}$ , and  $X_{i-1,j+1}$  by one choice of move.
- We also have rules that say when the head is not near  $X_{ij}$ , then  $X_{ij} = X_{i-1,j}$ .
- Details in the reader. The essential point is that we can write an expression for each  $X_{ij}$  in  $O(1)$  time.
  - ◆ Therefore, this expression is  $O(1)$  long, independent of  $n$ .

## Finishes Right

Key idea: we defined the TM to repeat its ID once it accepts, so we can be sure the last ID has an accepting state if the TM accepts.

- $F$  is therefore the OR of all variables  $y_{p(n),j,q}$  where  $q$  is an accepting state.

## Conjunctive Normal Form

We now know SAT is NP-complete. However, when reducing to other problems, it is convenient to use a restricted version of SAT, called 3SAT, where the Boolean expression is the AND of *clauses*, and each clause consists of exactly 3 *literals*.

- A literal is a variable or a negated variable.
  - ◆ E.g.,  $x$  or  $\neg y$ . We shall sometimes use the common convention where  $\bar{x}$  represents the negation of  $x$ .
- A *clause* is the OR of literals.
  - ◆ E.g.,  $(x \vee \bar{y} \vee z)$ .
  - ◆ We shall often follow common convention and use  $+$  for  $\vee$  in clauses, e.g.,  $(x + \bar{y} + z)$ , and also use juxtaposition (like a multiplication) for  $\wedge$ .
- An expression that is the AND of clauses is in *conjunctive normal form* (CNF).

## CSAT

Satisfiability for CNF expressions is NP complete.

- The proof (reduction from SAT) is simple, because the expression  $S \wedge M \wedge F$  we derived is already the product (AND) of expressions whose size is  $O(1)$ , i.e., not dependent on  $n = |w|$ .
- First, we can push all the  $\neg$ 's down the expression until they apply only to variables; i.e., any expression is converted to an AND-OR expression of literals.
  - ◆ Use *DeMorgan's laws*:  $\neg(E \wedge F) = (\neg E) \vee (\neg F)$  and  $\neg(E \vee F) = (\neg E) \wedge (\neg F)$ .
  - ◆ Changes the size of the expression by only a constant factor (because extra  $\neg$ 's and possibly parentheses are introduced).

- Next, distribute the OR's over the AND's, to get a CNF expression.
  - ◆ This process can **exponentiate** the size of an expression.
  - ◆ However, since this process only needs to be applied to expressions of size  $O(1)$ , the result may be huge expressions, but expressions whose lengths are independent of  $n$  and therefore still  $O(1)!$

### 3-CNF and 3SAT

- A Boolean expression is in 3-CNF if it is the product (AND) of clauses, and each clause consists of exactly 3 literals.
  - ◆ Example:  $(x + \bar{y} + z)(\bar{x} + w + \bar{z})$ .
- The problem  $\beta SAT$  is satisfiability for 3-CNF expressions.

### Reducing CSAT to 3SAT

It would be nice if there were a way to turn any CNF expression into an equivalent 3-CNF expression, but there isn't.

- Trick: we don't have to turn a CNF expression  $E$  into an equivalent 3-CNF expression  $F$ , we just need to know that  $F$  is satisfiable if and only if  $E$  is satisfiable.
- We turn  $E$  into 3-CNF  $F$  in polynomial time by introducing new variables.
  - ◆ If the clause is too long, introduce extra variables. Example:  $(u + v + w + x + y + z)$  becomes  $(u + v + a)(\bar{a} + w + b)(\bar{b} + x + c)(\bar{c} + y + z)$ .
  - ◆ A clause of only two, like  $(x + y)$  can become  $(x + y + a)(x + y + \bar{a})$ .
  - ◆ A clause of one, like  $(x)$  can become  $(x + a + b)(x + a + \bar{b})(x + \bar{a} + b)(x + \bar{a} + \bar{b})$ .
  - ◆ See the reader for explanations of why these transformations preserve satisfiability, and can be carried out in polynomial time.
- Thus 3SAT is NP-complete. This problem plays a role similar to PCP for proving NP-completeness of problems.