The Class of Languages P

If a (deterministic) TM M has some
polynomial p(n) such that M never makes
more than p(n) moves when presented with
input of length n, then M is said to be a
polynomial-time TM.

P is the set of languages that are accepted by
polynomial-time TM’s.

Equivalently, P is the set of problems that can
be solved by a real computer by a polynomial-
time algorithm.

O Why? Because while T'(n) steps on a
computer may become T3(n) steps on a

TM, T'(n) cannot be a polynomial unless
T3(n) is.

0 Many familiar problems are in P: graph
reachability (transitive closure), matrix
multiplication (is this matrix the product
of these other two matrices?), etc.

The Class of Languages NP

A nondeterministic TM that never makes
more than p(n) moves in any sequence of
choices for some polynomial p) is said to be
a polynomial-time NTM.

NP is the set of languages that are accepted
by polynomial-time NTM’s.

Many problems are in AP but appear not to
be in P: TSP (is there a tour of all the nodes
in a graph with total edge weight < k7), SAT
(does this Boolean expression have a satisfying
assignment of its variables?), CLIQUE (does
this graph have a set of £ nodes with edges
between every pair?).

One of the great mathematical questions of
our age: Is there anything in AP that is not
in P?

NP-Complete Problems

If we can’t resolve the “P = NP question, we can
at least demonstrate that certain problems in NP
are “hardest,” in the sense that if any one of them

were in P, then P = N'P.

Called NP-complete problems.

Intellectual leverage: each NP-complete
problem’s apparent difficulty reenforces the
belief that they are all hard.

1



Method for Proving NP-complete Problems

Polynomial-time reductions (PTR): take time
that is some polynomial in the input size to
convert instances of one problem to instances
of another.

O  Of course, the same algorithm converts
non-instances of one to non-instances of
the other.

If P, PTR to Ps, and Ps is in P, then so is
P

O Why? Combine the PTR and P test to
get a polynomial-time algorithm for P .

Start by showing every problem in NP has
a PTR to SAT (= satisfiability of a Boolean
formula).

O Thus, if SAT is in P, everything in NP is
inP;ie,P=NP!

Then, more problems can be proven NP-
complete by showing that SAT PTRs to them,
directly, or indirectly.

0 Key point: the composition of any finite
number of PTR’s is a PTR.

Don’t forget that you also need to show
the problem is in AP (usually easy, but
necessary).

Reduction of Any L in NP to SAT

Assume L = L(M) for some NTM M that is time-
bounded by polynomial p(n).

Key idea: if w, of length n, is in L, then there
is a sequence of p(n) + 1 ID’s, each of length
p(n)+ 1, that demonstrates acceptance of w.

0  Well not exactly: the accepting sequence
might be shorter. If so, extend F to allow
a F aif ais an ID with an accepting
state.

O  Still not exactly: some ID’s will be
shorter than p(n) 4+ 1 symbols. Pad those
out with blanks.

Now, we can imagine a square array of
symbols X;;, for 7 and j ranging from 0 to
p(n), where X;; is the symbol in position j of
the ith 1D.



e  Given string w, construct a Boolean
expression that says “these Xj;’s represent
an accepting computation of w.

00 Very Important: The construction
must be carried out in time polynomial
inn = |w|. In fact, we need only O(1)
work per X;; [or O(p?(n)) total]

0 Another important principle: The output
cannot be longer than the amount of time
taken to generate it, so we are saying that
the Boolean expression will have O(1)
“stuft” per X;;.

e  The propositional variables in the desired
expression are named y; ; v, which we should
interpret as an assertion that the symbol X;;
1sY.

e  The desired expression F(w)is SAMAF =
starts, moves, and finishes right.

Starts Right

e Sisthe AND of each of the proper variables:
Y0,0,g0 NY0,1,a1 A AYonan, AYont1,BA A
Yo,p(n),B

[0 Here, qg is the start state, w = ay, ..., an,

and B 1s the blank.

Moves Right

Key idea: the value of X;; depends only on the
three symbols above it, to the northeast, and the
northwest.

e  However, since the components of a move
(next state, new symbol, and head direction)
must come from the same NTM choice, we
need rules that say: when X;_; ; is the state,
then all three of X; ;_1, X;;, and X; ;44
are determined from X;_; ;_1, X;_1;, and
Xi—1;+1 by one choice of move.

e  We also have rules that say when the head is
not near X;;, then X;; = X;_q ;.

e  Details in the reader. The essential point is
that we can write an expression for each X;;
in O(1) time.

O Therefore, this expression is O(1) long,
independent of n.
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Finishes Right

Key idea: we defined the TM to repeat its ID once
it accepts, so we can be sure the last ID has an
accepting state if the TM accepts.

e  Fis therefore the OR of all variables y,(n) ; 4
where ¢ is an accepting state.

Conjunctive Normal Form

We now know SAT is NP-complete. However,
when reducing to other problems, it is convenient
to use a restricted version of SAT, called 3SAT,
where the Boolean expression is the AND of
clauses, and each clause consists of exactly 3
literals.

e A literal is a variable or a negated variable.

O E.g., z or —y. We shall sometimes use the
common convention where Z represents
the negation of .

o A clause 1s the OR of literals.
O Eg,(xVyVz).

0 We shall often follow common convention
and use + for V in clauses, e.g., (¢ +
g + z), and also use juxtaposition (like
a multiplication) for A.

e  An expression that is the AND of clauses is in
congunctive normal form (CNF).

CSAT
Satisfiability for CNF expressions is NP complete.

e The proof (reduction from SAT) is simple,
because the expression S A M A F we derived
is already the product (AND) of expressions
whose size is O(1), i.e., not dependent on n =
|w].

e  First, we can push all the =’s down the
expression until they apply only to variables;
l.e., any expression is converted to an AND-
OR, expression of literals.

O Use DeMorgan’s laws: ~(EAF) = (-E)V
(=F)and =(EV F) = (=E)A(=F).

0 Changes the size of the expression by only
a constant factor (because extra —’s and
possibly parentheses are introduced).



Next, distribute the OR’s over the AND’s; to
get a CNF expression.

0 This process can exponentiate the size
of an expression.

[0 However, since this process only needs to
be applied to expressions of size O(1),
the result may be huge expressions,
but expressions whose lengths are
independent of n and therefore still O(1)!

3-CNF and 3SAT

A Boolean expression is in 3-CNF if it is the
product (AND) of clauses, and each clause
consists of exactly 3 literals.

O Example: (z+y+ 2)(2 +w+ 2).

The problem 35AT is satisfiability for 3-CNF

expressions.

Reducing CSAT to 3SAT

It would be nice if there were a way to turn
any CNF expression into an equivalent 3-CNF
expression, but there isn’t.

Trick: we don’t have to turn a CNF
expression F into an equivalent 3-CNF
expression F', we just need to know that F'
is satisfiable if and only if F is satisfiable.

We turn £ into 3-CNF F in polynomial time
by introducing new variables.

O If the clause is too long, introduce extra
variables. Example: (u+v+w+az+y+2)
becomes (u + v 4 a)(a + w + b)(b + = +
e+ y+z).

O A clause of only two, like (x + y) can
become (# +y+ a)(z + y+ a).

O A clause of one, like (#) can become (z +

a+b)(x+a+b)(x+a+b)(x+atb).

0 See the reader for explanations of
why these transformations preserve
satisfiability, and can be carried out in
polynomial time.

Thus 3SAT is NP-complete. This problem
plays a role similar to PCP for proving NP-
completeness of problems.



