
Post's Correspondence Problem

� An undecidable, but RE, problem that
appears not to have anything to do with
TM's.

� Given two lists of \corresponding" strings
(w1; w2; : : : ; wn) and x1; x2; : : : ; xn), does
there exist a nonempty sequence of integers
i1; i2; : : : ; ik such that wi1wi2 � � �wi+k =
xi1xi2 � � �xik?

� Intuition: we can try all lists i1; i2; : : : ; ik in
order of k. If we �nd a solution, the answer
is \yes." But if we never �nd a solution, how
can we be sure no longer solution exists, so we
can never say \no."

Example

(1; 0; 010; 11) and (10; 10; 01; 1).

� A solution is 1; 2; 1; 3; 3; 4.

� The constructed string from both lists is
10101001011.

Another Example

From the course reader: (10; 011; 101) and
(101; 11; 011).

� Another argument why this instance of PCP
has no solution:

✦ The �rst index has to be 1 because only
the pair 10 and 101 begin with the same
symbol.

✦ Then, whatever indexes we choose to
continue, there will be more 1's in the
string constructed from the �rst list than
the second (because in each corresponding
pair there are at least as many 1's in the
second list). Thus, the two strings cannot
be equal.

Plan to Show PCP is Undecidable

1. Introduce MPCP, where the �rst pair must be
taken �rst in a solution.

2. Show how to reduce MPCP to PCP.

3. Show how to reduce Lu to MPCP.

✦ This is the only reason for MPCP: it
makes the reduction from Lu easier.

4. Conclude that if PCP is decidable, so is
MPCP, and so is Lu (which we know is false).

1



Reduction of MPCP to PCP

Trick: given a MPCP instance, introduce a new
symbol *.

� In the �rst list, * appears after every symbol,
but in the second list, the * appears before

every symbol.

✦ Example: the pair 10 and 011 becomes
1*0* and *0*1*1.

✦ Notice that no such pair can ever be the
�rst in a solution.

� Take the �rst pair w1 and x1 from the MPCP
instance (which must be chosen �rst in a
MPCP solution) and add to the PCP instance
another pair in which the *'s are as always,
but w1 also gets an extra * at the beginning.

✦ Referred to as \pair 0."

✦ Example: if 10 and 011 is the �rst pair,
also add to the PCP instance the pair
*1*0* and *0*1*1.

� Finally, since the strings from the �rst list will
have an extra * at the end, add to the PCP
instance the pair $ and *$.

✦ $ is a new symbol, so this pair can be
used only to complete a match.

✦ Referred to as the \�nal pair."

Proof the Reduction is Correct

� If the MPCP instance has a solution 1
followed by i1; i2; : : : ; ik, Then the PCP
instance has a solution, which is the same,
using the �rst pair in place of pair 1, and
terminating the list with the �nal pair.

� If the PCP instance has a solution, then it
must begin with the \�rst pair," because
no other pair begins with the same symbol.
Thus, removing the *'s and deleting the last
pair gives a solution to the MPCP instance.

Reduction of Lu to MPCP

� Intuition: The equal strings represent a
computation of a TM M on input w.

✦ Sequence of ID's separated by a special
marker #.

� First pair is # and #q0w#.

2



� String from �rst list is always one ID behind,
unless an accepting state is reached, in which
case the �rst string can \catch up."

� Some example pairs:

1. X and X for every tape symbol X. Allows
copying of symbols that don't change from one
ID to the next.

2. If �(q;X) = (P; Y;R), then qX and Y p is a
pair. Simulates a move for the next ID.

3. If q is an accepting state, then XqY and q is a
pair for all X and Y . Allows ID to \shrink to
nothing" when an accepting state is reached.

Undecidable Problems About CFL's

We are applying the theory of undecidability in a
useful way when we show a real problem not to be
solvable by computer.

� Example: You may think the CS154 project
was hard, but at least there is an algorithm
to convert RE's to DFA's, so it is at least
possible for you to succeed.

� Suppose next spring's CS154 project is to
take a CFG and tell whether it is ambiguous.
You can't do it because the problem is
undecidable!

Converting PCP to CFG's

For each list A = (w1; w2; : : : ; wn) we can construct
a grammar and a language that represents all
sequences of integers i1; i2; : : : ; ik and the strings
wi1wi2 � � �wik that are constructed from those lists
of integers.

� Use a1; a2; : : : ; an as new symbols (not in the
alphabet of the PCP instance) representing
the integers.

� The \grammar for list A": S !
w1Sa1 j w2Sa2 j � � � j wnSan j �.

✦ Yields all concatenations of w's followed
by the reverse of their index sequence.

Reduction of PCP to CFG Ambiguity

Problem

Given lists A and B, construct grammar as follows:

� S ! A j B.

� A is the start symbol for a grammar from list
A; B is the same for list B.

3



� If there is a solution to the PCP instance,
then the same string can be derived starting
S )
lm

A and S )
lm

B.

✦ Conversely, the only way a string can
have two leftmost derivations is if they
begin in these two ways, because the
grammar of one list is unambiguous.

Example

Use the lists of our �rst example: (1; 0; 010; 11)
and (10; 10; 01; 1). Let a; b; c; d stand for the four
index integers. The grammar is:

S ! A j B
A! 1Aa j 0Ab j 010Ac j 11Ad j �
B ! 10Ba j 10Bb j 01Bc j 1Bd j �

� A string with two leftmost derivations:
10101001011dccaba.

✦ S )
lm

1Aa )
lm

10Aba )
lm

101Aaba )
lm

101010Acaba )
lm

101010010Accaba )
lm

10101001011Adccaba )
lm

10101001011dccaba.

✦ S )
lm

10Ba )
lm

1010Bba )
lm

101010Baba )
lm

10101001Bcaba )
lm

1010100101Bccaba )
lm

10101001011Bdccaba )
lm

10101001011dccaba.

Undecidable Problem: Is the Intersection of

Two CFL's Empty?

Consider the two list languages from a PCP
instance. They have an empty intersection if and
only if the PCP instance has a solution.

Complements of List Languages

We can get other undecidability results about
CFL's if we �rst establish that the complement
of a list language is a CFL.

� PDA is easier approach.

� Accept all ill-formed input (not a sequence of
symbols followed by indexes) using the state.

� For inputs that begin with symbols from the
alphabet of the PCP instance, store them on
the stack, accepting as we go.

4



� When index symbols start, pop the stack,
making sure that the right strings were found
on top of the stack; again, keep accepting
until� � �

� When we expose the bottom-of-stack marker,
we have found a sequence of strings from the
PCP list and their matching indexes. This
string is not in the complement of the list
language, so don't accept.

� If more index symbols come in, then we have
a mismatch, so start accepting again and keep
on accepting.

Undecidable Problem: Is a CFL Equal to

��?

� Take an instance of PCP, say lists A and B.

� The union of the complements of their two list
languages is �� if the instance has no solution,
and something less if there is a solution.

Undecidable Problem: Is the Intersection of

Two CFL's Regular?

Key idea: the intersection of list languages is
regular if and only if it is empty. Thus, PCP
reduces to regularity of intersection for CFL's.

� Obviously, if empty, it is regular.

� Suppose the intersection of two list languages,
for A and B, LA \ LB , is nonempty. Then
there is a solution to this instance of PCP, say
string w and string of index symbols i.

✦ Example: for the running PCP instance,
w = 10101001011 and i = abaccd.

� Then ik is an index sequence that yields
solution wk for all k.

✦ General principle: concatenation of PCP
solutions is a solution.

� Consider homomorphism h(0) = w and h(1) =
iR.

� h�1(LA \ LB) is f0
n1n j n � 1g.

� Since regular languages are closed under
inverse homomorphism, if the intersection
were regular, so would h�1(LA \ LB) be.

� Since we know this language is not regular, we
conclude that LA \ LB is not regular.

5


