Procedures Versus Algorithms

There are two senses in which a TM accepts a
language.

1. The TM accepts the strings in the language
(by final state), but does not halt on some of
the strings not in the language.

[0 Thus, we can never be sure whether those
strings are rejected, or eventually will be
accepted.

O A language accepted in this way is called
recursively enumerable (RE).

[0 Note: this notion is the normal “accepted
by a TM” notion.

0 The TM is sometimes referred to as a
procedure.

2.  The TM accepts by final state, but halts on
every string, whether or not it is accepted.

O A language accepted this way is called
recursive.

[0 As a problem, the question is called
decidable.

00 The TM is called an algorithm.

Plan
1. Show a particular language not to be RE.

O Like the “hello-world” argument, we
show no TM can tell whether a given TM
halts on a given input — the proof is by
“diagonalization,” or self-reference.

2. Use the non-RE language from (1) to show
another language to be RE, but not recursive.

O Trick: if a language and its complement
are both RE, then they are both
recursive.

O Thus, if a language L is RE, but its
complement 1s not, then L is not
recursive.

TM’s as Integers

We shall focus on TM’s whose input alphabet is
{0, 1}. Each such TM can be represented by one or
more integers, using the following code:

e  Assume the states are {q1,¢s,...}. Represent
q; by 0"



e  Assume the tape symbols are {X1, Xo, ...},
where the first three of these are 0, 1, and B,
in that order. Represent X; by 0.

e  Represent directions L and R by 0 and 00,
respectively, and refer to them as L = Dy,

R == Dz.
e  Represent a rule of the TM 6(¢;, X;) =
(¢, X1, Dyn) by 07109 10¥10'10™.

e  Represent the whole TM by
111C111C511 - - - 11C, 111, where Cj 1s the

code for one of the é rules, in any order.

0 This string is some integer in binary, so
we can call the TM M;, where ¢ is that
integer.

e  (Conversely, every integer ¢ can be said to
describe some TM M;.

O If ¢ in binary is not of the right form
(111code - - ), then M; is the TM with
no moves. Thus, H(M;) is L(O + 1)*)

0 Note that many integers represent the
same TM, but that is neither good nor
bad.

The Diagonalization Language

Define Ly to be the set of binary strings w with
the following properties:

1. First, let ¢ be the integer that is 1w in binary.
O Refer to w as the “¢th string,” or w;.

2. Then w; is in Ly if and only if w; is not in
H(M;).

Proof L; is not RE

Suppose Lg is RE. Then Lgy = H(M) for some TM
M.

e  Since the input alphabet of M is {0, 1}, M is
M;j for at least one value of j.

e Let z be the jth string; i.e., 1z 18 j in binary.
e  Question: 1s x in L47

O Suppose so. Then z is not in H(M;), by
definition of Lq. But H(M;) = H(M) =
L4, so z is not in Ly (Contradiction).

O Suppose not. Then x is in H(M;) by
definition of Lq. But H(M;) = H(M) =
L4, so z is in Lgq (Contradiction).



Since we derive a contradiction in either case,
we conclude that our assumtion H(M) = Lq4
was wrong, and in fact, there is no such TM

M.

Rules About Complements

Let L and L be a language and its complement
with respect to alphabet {0, 1}.

If L is recursive, so is L.

0 Proof: Find a TM M that accepts L by
final state but always halts. Arrange for a
TM M’ to simulate M, but accept if and
only if M halts before accepting.

If L and L are RE, then both are recursive.

O Proof: Simulate TM’s for both L and L
on separate tracks. One or the other is
guaranteed to accept, so the simulating
TM can always be made to halt.

The Universal Language

L, = the set of binary strings consisting of a code
for some TM M; followed by some binary string w,
such that w is in H(M;).

Proof in reader that L, is RE.

0 1In essence: a TM can be treated as a
stored-program device, just like a real
computer.

O Hard part of proof: Since M; may have
any number of states and tape symbols,
one multitape TM M cannot simulate
these states and symbols directly. Rather,
it represents them as strings of 0’s (as
in the code we developed) and compares
using scratch tapes.

Proof L, is not recursive: show L, is not RE.

0 Remember, if L, were recursive, then L,
would be recursive, and therefore RE.

Proof that I, is not RE:

O A reduction from L_dto TLy: Show that if
there is a TM for L,, then there is a TM
for Lg (which we know there isn’t).

00 Transform w by first checking that lw
represents some TM M; (i.e., it is of the
form 111ecodes111). If so, produce lww
as input to a hypothetical L,, TM. If not,
reject w, since lw represents a TM that
accepts everything.
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O If lww is produced, simulate the L, TM
on this input. If it accepts, then TM M;
(represented by lw) does not accept the
tth string, w, so w is in Lg.

O If lww is not in L, then M; does accept
w, so w is not in Lg.

Summary:

O L4 is undecidable (not recursive), and in
fact not RE.

0 L, 1s undecidable, but RE.

O L, islike Ly, not RE.

O Lgis like L,, RE, although we did not

prove this.

Rice’s Theorem

Essentially, any nontrivial property of the language
of a TM 1s undecidable.

e  Note the difference between a property of
L(M) from a property about M:
0O Example: L(M) = 0 is a property of the
language.
0O Example: “M has at least 100 states” is a
property of the TM itself.
O “= §” is undecidable; “has 100 states” is
easily decidable, just look at the code for
M and count.
Properties

A property of the RE languages is a set of strings,
those that represent TM’s in a certain class.

Example: the property “is context-free” is the
set of codes for all TM’s M such that L(M) is
a CFL.

The property is “of languages” if TM’s whose
languages are the same either all have the
property or none do.

Proof of Rice’s Theorem

Let P be any nontrivial property of the RE
languages; i.e., at least one RE language has the
property, and at least one does not.

We shall prove that P (as a language, i.e., a
set of TM codes) is undecidable.



e Assume ) does not have property P.

U If it does, consider P. P is decidable if
and only if P is.

e  Suppose P 1s decidable. Assume L is a
language with property P, and 0 is a language
without property P. We can decide L,
(something we know is impossible) as follows.

O Given (M, w), test if wis in H(M) as
follows. First, we shall construct a TM
N to accept either @ or L, depending on
whether M accepts w.

O N simulates M on w. Note that w is
not input to N; rather N writes w on a
scratch tape and simulates M which is
part of N’s own states.

O If M accepts w, N then simulates a TM
My, for language L on N’s own input z.
If My accepts x then N accepts x.

O If M never accepts w, N never gets to
simulate My, and therefore accepts 0.

0 Feed the constructed N to the
hypothetical P tester. Accept (M, w) if
and only if N has property P.

Consequences of Rice’s Theorem

We cannot tell if a TM:

o Accepts 0.

e  Accepts a finite language.

e  Accepts a regular language, a context free
language, etc. etc.

Reductions

To prove a problem P to be hard in some sense
(e.g., undecidable), we can reduce P, a known
hard problem, to P;.

e  For each instance w (string in) Pa, we
construct an instance z of Py, using some
fixed algorithm.

0 The same algorithm must also turn a
string w that is not in P into a string
z that 1s not in P;.

e  We can then argue that if P; were decidable,
we could use the algorithm in which we
transformed w to & and then tested z for
membership in Py as a way to decide Ps.

O Since Ps is undecidable, we have a
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contradiction of the assumption P is

decidable.

The same idea works for showing P; not to
be RE, but now P, must be non-RE, and
the transformation from instances of Py to
instances of P; may be a procedure, not
necessarily an algorithm.

Common error: trying to do the reduction in
the wrong direction.



