

Procedures Versus Algorithms

There are two senses in which a TM accepts a language.

1. The TM accepts the strings in the language (by final state), but does not halt on some of the strings not in the language.
 - ◆ Thus, we can never be sure whether those strings are rejected, or eventually will be accepted.
 - ◆ A language accepted in this way is called *recursively enumerable* (RE).
 - ◆ Note: this notion is the normal “accepted by a TM” notion.
 - ◆ The TM is sometimes referred to as a *procedure*.
2. The TM accepts by final state, but halts on every string, whether or not it is accepted.
 - ◆ A language accepted this way is called *recursive*.
 - ◆ As a problem, the question is called *decidable*.
 - ◆ The TM is called an *algorithm*.

Plan

1. Show a particular language not to be RE.
 - ◆ Like the “hello-world” argument, we show no TM can tell whether a given TM halts on a given input — the proof is by “diagonalization,” or self-reference.
2. Use the non-RE language from (1) to show another language to be RE, but not recursive.
 - ◆ Trick: if a language and its complement are both RE, then they are both recursive.
 - ◆ Thus, if a language L is RE, but its complement is not, then L is not recursive.

TM's as Integers

We shall focus on TM's whose input alphabet is $\{0, 1\}$. Each such TM can be represented by one or more integers, using the following code:

- Assume the states are $\{q_1, q_2, \dots\}$. Represent q_i by 0^i .

- Assume the tape symbols are $\{X_1, X_2, \dots\}$, where the first three of these are 0, 1, and B , in that order. Represent X_i by 0^i .
- Represent directions L and R by 0 and 00, respectively, and refer to them as $L = D_1$, $R = D_2$.
- Represent a rule of the TM $\delta(q_i, X_j) = (q_k, X_l, D_m)$ by $0^i 1 0^j 1 0^k 1 0^l 1 0^m$.
- Represent the whole TM by $111C_111C_211 \dots 111C_n111$, where C_i is the code for one of the δ rules, in any order.
 - ◆ This string is some integer in binary, so we can call the TM M_i , where i is that integer.
- Conversely, every integer i can be said to describe some TM M_i .
 - ◆ If i in binary is not of the right form $(111code \dots)$, then M_i is the TM with no moves. Thus, $H(M_i)$ is $L(0 + 1)^*$.
 - ◆ Note that many integers represent the same TM, but that is neither good nor bad.

The Diagonalization Language

Define L_d to be the set of binary strings w with the following properties:

1. First, let i be the integer that is $1w$ in binary.
 - ◆ Refer to w as the “ith string,” or w_i .
2. Then w_i is in L_d if and only if w_i is not in $H(M_i)$.

Proof L_d is not RE

Suppose L_d is RE. Then $L_d = H(M)$ for some TM M .

- Since the input alphabet of M is $\{0, 1\}$, M is M_j for at least one value of j .
- Let x be the j th string; i.e., $1x$ is j in binary.
- Question: is x in L_d ?
 - ◆ Suppose so. Then x is not in $H(M_j)$, by definition of L_d . But $H(M_j) = H(M) = L_d$, so x is not in L_d (Contradiction).
 - ◆ Suppose not. Then x is in $H(M_j)$ by definition of L_d . But $H(M_j) = H(M) = L_d$, so x is in L_d (Contradiction).

- Since we derive a contradiction in either case, we conclude that our assumption $H(M) = L_d$ was wrong, and in fact, there is no such TM M .

Rules About Complements

Let L and \overline{L} be a language and its complement with respect to alphabet $\{0, 1\}$.

- If L is recursive, so is \overline{L} .
 - ◆ Proof: Find a TM M that accepts L by final state but always halts. Arrange for a TM M' to simulate M , but accept if and only if M halts before accepting.
- If L and \overline{L} are RE, then both are recursive.
 - ◆ Proof: Simulate TM's for both L and \overline{L} on separate tracks. One or the other is guaranteed to accept, so the simulating TM can always be made to halt.

The Universal Language

L_u = the set of binary strings consisting of a code for some TM M_i followed by some binary string w , such that w is in $H(M_i)$.

- Proof in reader that L_u is RE.
 - ◆ In essence: a TM can be treated as a stored-program device, just like a real computer.
 - ◆ Hard part of proof: Since M_i may have any number of states and tape symbols, one multitape TM M cannot simulate these states and symbols directly. Rather, it represents them as strings of 0's (as in the code we developed) and compares using scratch tapes.
- Proof L_u is not recursive: show $\overline{L_u}$ is not RE.
 - ◆ Remember, if L_u were recursive, then $\overline{L_u}$ would be recursive, and therefore RE.
- Proof that $\overline{L_u}$ is not RE:
 - ◆ A *reduction* from L_d to $\overline{L_u}$: Show that if there is a TM for $\overline{L_u}$, then there is a TM for L_d (which we know there isn't).
 - ◆ Transform w by first checking that $1w$ represents some TM M_i (i.e., it is of the form $111codes111$). If so, produce $1ww$ as input to a hypothetical $\overline{L_u}$ TM. If not, reject w , since $1w$ represents a TM that accepts everything.

- ◆ If $1ww$ is produced, simulate the $\overline{L_u}$ TM on this input. If it accepts, then TM M_i (represented by $1w$) does not accept the i th string, w , so w is in L_d .
- ◆ If $1ww$ is not in $\overline{L_u}$, then M_i does accept w , so w is not in L_d .
- Summary:
 - ◆ L_d is undecidable (not recursive), and in fact not RE.
 - ◆ L_u is undecidable, but RE.
 - ◆ $\overline{L_u}$ is like L_d , not RE.
 - ◆ $\overline{L_d}$ is like L_u , RE, although we did not prove this.

Rice's Theorem

Essentially, any nontrivial property of *the language of* a TM is undecidable.

- Note the difference between a property of $L(M)$ from a property about M :
 - ◆ Example: $L(M) = \emptyset$ is a property of the language.
 - ◆ Example: “ M has at least 100 states” is a property of the TM itself.
 - ◆ “ $= \emptyset$ ” is undecidable; “has 100 states” is easily decidable, just look at the code for M and count.

Properties

A *property* of the RE languages is a set of strings, those that represent TM's in a certain class.

- Example: the property “is context-free” is the set of codes for all TM's M such that $L(M)$ is a CFL.
- The property is “of languages” if TM's whose languages are the same either all have the property or none do.

Proof of Rice's Theorem

Let P be any nontrivial property of the RE languages; i.e., at least one RE language has the property, and at least one does not.

- We shall prove that P (as a language, i.e., a set of TM codes) is undecidable.

- Assume \emptyset does not have property P .
 - ◆ If it does, consider \overline{P} . P is decidable if and only if \overline{P} is.
- Suppose P is decidable. Assume L is a language with property P , and \emptyset is a language without property P . We can decide L_u (something we know is impossible) as follows.
 - ◆ Given (M, w) , test if w is in $H(M)$ as follows. First, we shall construct a TM N to accept either \emptyset or L , depending on whether M accepts w .
 - ◆ N simulates M on w . Note that w is not input to N ; rather N writes w on a scratch tape and simulates M which is part of N 's own states.
 - ◆ If M accepts w , N then simulates a TM M_L for language L on N 's own input x . If M_L accepts x then N accepts x .
 - ◆ If M never accepts w , N never gets to simulate M_L , and therefore accepts \emptyset .
 - ◆ Feed the constructed N to the hypothetical P tester. Accept (M, w) if and only if N has property P .

Consequences of Rice's Theorem

We cannot tell if a TM:

- Accepts \emptyset .
- Accepts a finite language.
- Accepts a regular language, a context free language, etc. etc.

Reductions

To prove a problem P_1 to be hard in some sense (e.g., undecidable), we can *reduce* P_2 , a known hard problem, to P_1 .

- For each instance w (string in) P_2 , we construct an instance x of P_2 , using some fixed algorithm.
 - ◆ The same algorithm must also turn a string w that is not in P_2 into a string x that is not in P_1 .
- We can then argue that if P_1 were decidable, we could use the algorithm in which we transformed w to x and then tested x for membership in P_1 as a way to decide P_2 .
 - ◆ Since P_2 is undecidable, we have a

contradiction of the assumption P_1 is decidable.

- The same idea works for showing P_1 not to be RE, but now P_2 must be non-RE, and the transformation from instances of P_2 to instances of P_1 may be a procedure, not necessarily an algorithm.
- Common error: trying to do the reduction in the wrong direction.