Outline of Turing Machines and Complexity

1. Turing machine (TM) = formal model of a
computer running a particular program.

O We must argue that the TM can do
exactly what a computer can do, albeit
slower.

2. We use the simplicity of the TM model to
prove formally that there are specific problems
(=languages) that the TM cannot solve.

00 Two classes: “recursively enumerable”
= TM can accept the strings in the
language but cannot tell for certain that a
string is not in the language; “non-RE” =
no TM can even recognize the members of
the language in the RE sense.

3. We then look at problems (languages) that do
have TM’s that accept them and always halt;
i.e., they not only recognize the strings in the
language, but they tell us when they are sure
the string is not in the language.

O The classes P and NP are those
languages recognizable by deterministic
(resp., nondeterministic) TM’s that halt
within a time that is some polynomial in
the input.

0 Polynomial is as close as we can get,
because real computers and different
models of (deterministic) TM’s can differ
in their running time by a polynomial
function, e.g., a problem might take
O(n?) time on a real computer and O(n®)
on a TM.

4.  NP-complete problems: Since we don’t know
whether P = NP, but it appears that at least
some problems in NP take exponential time,
the best we can do 1s show that a certain
problem is “NP-complete,” = if this problem
is in P, then all of NP is in P.

5. Some specific problems that are NP-complete:
satisfiability of boolean (propositional logic)
formulas, traveling salesman, etc.

Intuitive Argument About an Undecidable
Problem

Given a C program, does it print hello, world.
as the first 13 characters of output?



e  We prove there is no C program to solve that
problem by supposing that there were such a
program H, the “hello-world-tester.”

O H takes as input a C program P and an
input file I for that program, and tells
whether P, with input I, “prints hello
world” (by which we mean it does so as
the first 13 characters).

e Modify H to a new program H; that acts like
H, but when H prints no, H; prints hello,
world.

O Requires some thought: we need to
find where no is printed and change the
printf statement.

e Modify Hy to Ho. This program takes only
one input, P, and acts like H; with both its
program and data inputs equal to P.

O Le., Hy(P) = Hy(P, P).

O Requires more thought: Hs must buffer
its input so it can be used as both the P
and I inputs to H;.

e  H, cannot exist. If it did, what would Ha(H>)
do?

O If Hao(Hy) = yes, then Hs given Hy as
input evidently does not print hello,
world. But HQ(HQ) = Hl(Hz,Hz) =
H(H,, Hs), and Hy prints yes if and only
if its first input, given its second input as
data, prints hello, world. Thus, Hs(H>)
= yes implies Hy(H2) = hello, world.

O But if Ho(H3) = hello, world. then
Hy(Hs, Hy) = hello, world. and
H(HQ,HQ) = no. ThUS, HQ(HQ) =
hello, world. implies Ho(H2) # hello,
world.

The TM

e  Finite-state control, like PDA.

e  One read-write tape serves as both input and
unbounded storage device.

0 Tape divided into cells.

[0 Each tape holds one symbol from the tape
alphabet.

0 Tape is “semi-infinite”; it ends only at the

left.



e  Tuape head marks the “current” cell, which 1s
the only cell that can influence the move of
the TM.

e Initially, tape holds aias - --a, BB - - - where
aias - - - an 1s the input, chosen from an input
alphabet (subset of the tape alphabet) and B
is the blank.

Formal TM

M=(Q,%,, 6 q,B,F), where:

e () = finte set of states.

e | = tape alphabet; ¥ C | = input alphabet.

e Bin

— ¥ = blank.

e goin @ = start symbol; FF C ) = accepting

states.

e § takes a state and tape symbol, returns a new
state, replacement symbol (either might not
change) and a direction L/R for head motion.

Example

Nontrivial examples are hard to come by. Here’s a
TM that checks its third symbol is 0, accepts if so,
and runs forever, if not.

M = ({p.¢,r,5,1},{0,1},{0,1, B}, p, B, {s})

1. é(p,X)=1(¢,X,R)for X =0,1.
2. 8¢, X)=(r,X,R)for X =0,1.
3. 8(r,0)=(s,0,L).

4. 8(r,1)=(,1, R).

5. 6(t,X)=(t,X,R)for X =0,1,B.

bl

ID’s of a Turing Machine

The ID (instantaneous description) captures what
is going on at any moment: the current state, the
contents of the tape, and the position of the tape
head.

e  Keep things finite by dropping all symbols to
the right of the head and to the right of the
rightmost nonblank.

O Subtle point: although there is no limit
on how far right the head may move and
write nonblanks, at any finite time, the
TM has visited only a finite prefix of the
infinite tape.



e Notation: agqf says:

0 « is the tape contents to the left of the
head.

The state is g.

(3 1s the nonblank tape contents at or to
the right of the tape head.

e Omne move indicated by F; zero, one, or more
%
moves represented by .

0 Check the reader for the detailed
definition of F.

Example

With input 0101, the sequence of ID’s of the TM
1s: p0101 F 0g101 - 01701 F 0s101.

e At that point it halts, since state s has no
move when the head is scanning 1.

With input 0111 the sequence 1s: p0111 F 0g111 +
01711+ 01141 F 01112 - 0111 Bt = - - -

e  The TM never halts, but continues to move
right.

Acceptance by Final State and by Halting

One way to define the language of a TM is by
the set of input strings that cause it to reach an
accepting state.

2%
o L(M)=Aw|qwt apsfor some pin F and
any « and §in , *}.

Another way is to define the set of strings that
cause the TM to helt = have no next move.

o H(M)={w] qowlf apX 3, and 8(p, X) is not
defined}.

0 Subtle point: a TM can appear to halt if
the next move would take the head off the
left end of the tape.

0 Given any TM, we can mark the left end
so that never happens; 1.e., we produce
a modified TM that accepts the same
language and halts rather than fall off
the left end.

Example

e The TM M of our previous example has L(M)
equal to those strings in the language of RE
(0+ 1)(0+ 1)0(0 + 1)*.



e H(M) is the language of e+0+ 1+ (0+1)(0+
1)+ (0+ 1)(0+ 1)0(0 4 1)*.

Equivalence of Acceptance by Final State
and Halting

We need to show L is L(My) for some TM M, if
and only if L is H(M3) for some TM Ma.

If
Modify M5 as follows:
1. Introduce one accepting state r.

2. Whenever there is no transition for M, on
state ¢ and symbol X, add a transition to
state r, moving right (so we can’t possibly fall
off the left end) and leaving symbol X.

Only-If

Roughly, we let Ms simulate M7, but if M; enters
an accepting state, My has no next move and so
halts.

e  Major problem: M; could halt without
accepting.

0 To avoid this problem, introduce state r
that moves right on every symbol, staying
in state » and leaving the tape symbols
unchanged.

O Give My a transition to r (moving right)
on every state-symbol combination that
does not have a rule.

e  Also, remove all transitions where the state is
an accepting state of My, so M will halt in
those situations.

Falling Off the Left End of Tape

The reader talks about the funny situation where
the TM would halt but falls off the left end of
tape.

e  This situation is not halting.

e Neither does a TM accept if it tries to enter
an accepting state as it falls off the left end.

e  We can prevent falling off the left end, by
marking the leftmost cell, as in the reader.

e  But it appears we do not need to do
so 1n order to prove the equivalence of
halting/accepting, since neither occurs when

the TM falls off the left end.



