

Outline of Turing Machines and Complexity

1. Turing machine (TM) = formal model of a computer running a particular program.
 - ◆ We must argue that the TM can do exactly what a computer can do, albeit slower.
2. We use the simplicity of the TM model to prove formally that there are specific problems (=languages) that the TM cannot solve.
 - ◆ Two classes: “recursively enumerable” = TM can accept the strings in the language but cannot tell for certain that a string is not in the language; “non-RE” = no TM can even recognize the members of the language in the RE sense.
3. We then look at problems (languages) that *do* have TM’s that accept them and always halt; i.e., they not only recognize the strings in the language, but they tell us when they are sure the string is not in the language.
 - ◆ The classes \mathcal{P} and \mathcal{NP} are those languages recognizable by deterministic (resp., nondeterministic) TM’s that halt within a time that is some polynomial in the input.
 - ◆ Polynomial is as close as we can get, because real computers and different models of (deterministic) TM’s can differ in their running time by a polynomial function, e.g., a problem might take $O(n^2)$ time on a real computer and $O(n^6)$ on a TM.
4. NP-complete problems: Since we don’t know whether $\mathcal{P} = \mathcal{NP}$, but it appears that at least some problems in \mathcal{NP} take exponential time, the best we can do is show that a certain problem is “NP-complete,” = if this problem is in \mathcal{P} , then all of \mathcal{NP} is in \mathcal{P} .
5. Some specific problems that are NP-complete: satisfiability of boolean (propositional logic) formulas, traveling salesman, etc.

Intuitive Argument About an Undecidable Problem

Given a C program, does it print `hello, world.` as the first 13 characters of output?

- We prove there is no C program to solve that problem by supposing that there were such a program H , the “hello-world-tester.”
 - ◆ H takes as input a C program P and an input file I for that program, and tells whether P , with input I , “prints hello world” (by which we mean it does so as the first 13 characters).
- Modify H to a new program H_1 that acts like H , but when H prints `no`, H_1 prints `hello`, `world`.
 - ◆ Requires some thought: we need to find where `no` is printed and change the `printf` statement.
- Modify H_1 to H_2 . This program takes only one input, P , and acts like H_1 with both its program and data inputs equal to P .
 - ◆ I.e., $H_2(P) = H_1(P, P)$.
 - ◆ Requires more thought: H_2 must buffer its input so it can be used as both the P and I inputs to H_1 .
- H_2 cannot exist. If it did, what would $H_2(H_2)$ do?
 - ◆ If $H_2(H_2) = \text{yes}$, then H_2 given H_2 as input evidently does not print `hello`, `world`. But $H_2(H_2) = H_1(H_2, H_2) = H(H_2, H_2)$, and H_1 prints `yes` if and only if its first input, given its second input as data, prints `hello`, `world`. Thus, $H_2(H_2) = \text{yes}$ implies $H_2(H_2) = \text{hello}, \text{world}$.
 - ◆ But if $H_2(H_2) = \text{hello}, \text{world}$. then $H_1(H_2, H_2) = \text{hello}, \text{world}$. and $H(H_2, H_2) = \text{no}$. Thus, $H_2(H_2) = \text{hello}, \text{world}$. implies $H_2(H_2) \neq \text{hello}, \text{world}$.

The TM

- Finite-state control, like PDA.
- One read-write *tape* serves as both input and unbounded storage device.
 - ◆ Tape divided into *cells*.
 - ◆ Each tape holds one symbol from the *tape alphabet*.
 - ◆ Tape is “semi-infinite”; it ends only at the left.

- *Tape head* marks the “current” cell, which is the only cell that can influence the move of the TM.
- Initially, tape holds $a_1 a_2 \cdots a_n B B \cdots$ where $a_1 a_2 \cdots a_n$ is the *input*, chosen from an *input alphabet* (subset of the tape alphabet) and B is the *blank*.

Formal TM

$M = (Q, \Sigma, \delta, q_0, B, F)$, where:

- Q = finite set of states.
- Σ = tape alphabet; $\Sigma \subseteq \text{input alphabet}$.
- B in Σ = blank.
- q_0 in Q = start symbol; $F \subseteq Q$ = accepting states.
- δ takes a state and tape symbol, returns a new state, replacement symbol (either might not change) and a direction L/R for head motion.

Example

Nontrivial examples are hard to come by. Here’s a TM that checks its third symbol is 0, accepts if so, and runs forever, if not.

$$M = (\{p, q, r, s, t\}, \{0, 1\}, \{0, 1, B\}, p, B, \{s\})$$

1. $\delta(p, X) = (q, X, R)$ for $X = 0, 1$.
2. $\delta(q, X) = (r, X, R)$ for $X = 0, 1$.
3. $\delta(r, 0) = (s, 0, L)$.
4. $\delta(r, 1) = (t, 1, R)$.
5. $\delta(t, X) = (t, X, R)$ for $X = 0, 1, B$.

ID’s of a Turing Machine

The ID (instantaneous description) captures what is going on at any moment: the current state, the contents of the tape, and the position of the tape head.

- Keep things finite by dropping all symbols to the right of the head and to the right of the rightmost nonblank.
- ◆ Subtle point: although there is no limit on how far right the head may move and write nonblanks, at any finite time, the TM has visited only a finite prefix of the infinite tape.

- Notation: $\alpha q \beta$ says:
 - α is the tape contents to the left of the head.
 - The state is q .
 - β is the nonblank tape contents at or to the right of the tape head.
- One move indicated by \vdash ; zero, one, or more moves represented by $\stackrel{*}{\vdash}$.
 - Check the reader for the detailed definition of \vdash .

Example

With input 0101, the sequence of ID's of the TM is: $p0101 \stackrel{*}{\vdash} 0q101 \vdash 01r01 \vdash 0s101$.

- At that point it halts, since state s has no move when the head is scanning 1.

With input 0111 the sequence is: $p0111 \vdash 0q111 \vdash 01r11 \vdash 011t1 \vdash 0111t \vdash 0111Bt \vdash \dots$.

- The TM never halts, but continues to move right.

Acceptance by Final State and by Halting

One way to define the language of a TM is by the set of input strings that cause it to reach an accepting state.

- $L(M) = \{w \mid q_0 w \stackrel{*}{\vdash} \alpha p \beta \text{ for some } p \text{ in } F \text{ and any } \alpha \text{ and } \beta \text{ in } \{\text{blank}\}^*\}$.

Another way is to define the set of strings that cause the TM to *halt* = have no next move.

- $H(M) = \{w \mid q_0 w \stackrel{*}{\vdash} \alpha p X \beta, \text{ and } \delta(p, X) \text{ is not defined}\}$.
 - Subtle point: a TM can *appear* to halt if the next move would take the head off the left end of the tape.
 - Given any TM, we can mark the left end so that never happens; i.e., we produce a modified TM that accepts the same language and halts rather than fall off the left end.

Example

- The TM M of our previous example has $L(M)$ equal to those strings in the language of RE $(0 + 1)(0 + 1)0(0 + 1)^*$.

- $H(M)$ is the language of $\epsilon + 0 + 1 + (0 + 1)(0 + 1) + (0 + 1)(0 + 1)0(0 + 1)^*$.

Equivalence of Acceptance by Final State and Halting

We need to show L is $L(M_1)$ for some TM M_1 if and only if L is $H(M_2)$ for some TM M_2 .

If

Modify M_2 as follows:

1. Introduce one accepting state r .
2. Whenever there is no transition for M_2 on state q and symbol X , add a transition to state r , moving right (so we can't possibly fall off the left end) and leaving symbol X .

Only-If

Roughly, we let M_2 simulate M_1 , but if M_1 enters an accepting state, M_2 has no next move and so halts.

- Major problem: M_1 could halt without accepting.
 - ◆ To avoid this problem, introduce state r that moves right on every symbol, staying in state r and leaving the tape symbols unchanged.
 - ◆ Give M_2 a transition to r (moving right) on every state-symbol combination that does not have a rule.
- Also, remove all transitions where the state is an accepting state of M_1 , so M_2 will halt in those situations.

Falling Off the Left End of Tape

The reader talks about the funny situation where the TM would halt but falls off the left end of tape.

- This situation is not halting.
- Neither does a TM accept if it tries to enter an accepting state as it falls off the left end.
- We can prevent falling off the left end, by marking the leftmost cell, as in the reader.
- But it appears we do not need to do so in order to prove the equivalence of halting/accepting, since *neither* occurs when the TM falls off the left end.