
Closure Properties of CFL's | Substitution

If a substitution s assigns a CFL to every symbol
in the alphabet of a CFL L, then s(L) is a CFL.

Proof

� Take a grammar for L and a grammar for
each language La = s(a).

� Make sure all the variables of all these
grammars are di�erent.

✦ We can always rename variables whatever
we like, so this step is easy.

� Replace each terminal a in the productions for
L by Sa, the start symbol of the grammar for
La.

� A proof that this construction works is in the
reader.

✦ Intuition: this replacement allows any
string in La to take the place of any
occurrence of a in any string of L.

Example

� L = f0n1n j n � 1g, generated by the
grammar S ! 0S1 j 01.

� s(0) = fanbm j m � ng, generated by the
grammar S ! aSb j A; A! aA j ab.

� s(1) = fab; abcg, generated by the grammar
S ! abA; A! c j �.

1. Rename second and third S's to S0 and
S1, respectively. Rename second A to B.
Resulting grammars are:

S ! 0S1 j 01
S0 ! aS0b j A; A! aA j ab
S1 ! abB; B ! c j �

2. In the �rst grammar, replace 0 by S0 and 1 by
S1. The combined grammar:

S ! S0SS1 j S0S1
S0 ! aS0b j A; A! aA j ab
S1 ! abB; B ! c j �

Consequences of Closure Under Substitution

1. Closed under union, concatenation, star.

✦ Proofs are the same as for regular
languages, e.g. for concatenation of CFL's
L1, L2, use L = fabg, s(a) = L1, and
s(b) = L2.

1



2. Closure of CFL's under homomorphism.

Nonclosure Under Intersection

� The reader shows the following language L =
f0i1j2k3l j i = k and j = lg not to be a CFL.

✦ Intuitively, you need a variable and
productions like A ! 0A2 j 02 to generate
the matching 0's and 2's, while you need
another variable to generate matching 1's
and 3's. But these variables would have
to generate strings that did not interleave.

� However, the simpler language f0i1j2k3l j i =
kg is a CFL.

✦ A grammar:

S ! S3 j A
A! 0A2 j B
B ! 1B j �

� Likewise the CFL f0i1j2k3l j j = lg.

� Their intersection is L.

Nonclosure of CFL's Under Complement

� Proof 1: Since CFL's are closed under union,
if they were also closed under complement,
they would be closed under intersection by
DeMorgan's law.

� Proof 2: The complement of L above is a
CFL. Here is a PDA P recognizing it:

✦ Guess whether to check i 6= k or j 6= l.
Say we want to check i 6= k.

✦ As long as 0's come in, count them on the
stack.

✦ Ignore 1's.

✦ Pop the stack for each 2.

✦ As long as we have not just exposed the
bottom-of-stack marker when the �rst 3
comes in, accept, and keep accepting as
long as 3's come in.

✦ But we also have to accept, and keep
accepting, as soon as we see that the
input is not in L(0�1�2�3�).

Closure of CFL's Under Reversal

Just reverse the body of every production.

2



Closure of CFL's Under Inverse

Homomorphism

PDA-based construction.

� Keep a \bu�er" in which we place h(a) for
some input symbol a.

� Read inputs from the front of the bu�er (�
OK).

� When the bu�er is empty, it may be reloaded
with h(b) for the next input symbol b, or we
may continue making �-moves.

Testing Emptiness of a CFL

As for regular languages, we really take a
representation of some language and ask whether
it represents ;.

� In this case, the representation can be a CFG
or PDA.

✦ Our choice, since there are algorithms to
convert one to the other.

� The test: Use a CFG; check if the start
symbol is useless?

Testing Finiteness of a CFL

� Let L be a CFL. Then there is some pumping-
lemma constant n for L.

� Test all strings of length between n and 2n� 1
for membership (as in next section).

� If there is any such string, it can be pumped,
and the language is in�nite.

� If there is no such string, then n � 1 is an
upper limit on the length of strings, so the
language is �nite.

✦ Trick: If there were a string z = uvwxy

of length 2n or longer, you can �nd a
shorter string uwy in L, but it's at most
n shorter. Thus, if there are any strings
of length 2n or more, you can repeatedly
cut out vx to get, eventually, a string
whose length is in the range n to 2n� 1.

Testing Membership of a String in a CFL

Simulating a PDA for L on string w doesn't
quite work, because the PDA can grow its stack
inde�nitely on � input, and we never �nish, even if
the PDA is deterministic.

3



� There is an O(n3) algorithm (n = length
of w) that uses a \dynamic programming"
technique.

✦ Called Cocke-Younger-Kasami (CYK)
algorithm.

� Start with a CNF grammar for L.

� Build a two-dimensional table:

✦ Row = length of a substring of w.

✦ Column = beginning position of the
substring.

✦ Entry in row i and column j = set of
variables that generate the substring of
w beginning at position j and extending
for i positions.

✦ In reader, these entries are denoted
Xj;i+j�1, i.e., the subscripts are
the �rst and last positions of the
string represented, so the �rst row is
X11; X22; : : : ; Xnn, the second row is
X12; X23; : : : ; Xn�1;n, and so on.

Basis: (row 1) Xii = the set of variables A such
that A ! a is a production, and a is the symbol at
position i of w.

Induction: Assume the rows for substrings of
length up to m � 1 have been computed, and
compute the row for substrings of length m.

� We can derive aiai+1 � � �aj from A if there is a
production A ! BC, B derives any pre�x of
aiai+1 � � �aj, and C derives the rest.

� Thus, we must ask if there is any value of k
such that

✦ i � k < j.

✦ B is in Xik.

✦ C is in Xk+1;j.

Example

In class, we'll work the table for the grammar:

S ! AS j SB j AB
A! a

B ! b

and the string aabb.

4


