Closure Properties of CFL’s — Substitution

If a substitution s assigns a CFL to every symbol
in the alphabet of a CFL L, then s(L) is a CFL.

Proof

e Take a grammar for L and a grammar for
each language L, = s(a).

e  Make sure all the variables of all these
grammars are different.

0 We can always rename variables whatever
we like, so this step is easy.

e  Replace each terminal @ in the productions for
L by Sg, the start symbol of the grammar for
Lg.

e A proof that this construction works is in the
reader.

O Intuition: this replacement allows any
string in L, to take the place of any
occurrence of a in any string of L.

Example

e L={0"1"|n > 1}, generated by the
grammar S — 051 | 01.

e 5(0) = {a™™ | m < n}, generated by the
grammar S — aSb | A; A — aA | ab.

o 5(1) = {ab,abc}, generated by the grammar
S—abd; A—c|e

1. Rename second and third S’s to Sy and
S1, respectively. Rename second A to B.
Resulting grammars are:

S —0S1]01
So — aSob | A; A — aA | ab
Sy —abB; B —c|e¢

2. In the first grammar, replace 0 by Sy and 1 by
S1. The combined grammar:

S—>SoSSl |5051
So — aSob | A; A — aA | ab
Sy —abB; B —c|e¢

Consequences of Closure Under Substitution
1. Closed under union, concatenation, star.

0 Proofs are the same as for regular
languages, e.g. for concatenation of CFL’s
Ly, Lo, use L = {ab}, s(a) = L1, and
S(b) = Lz.



2. Closure of CFL’s under homomorphism.

Nonclosure Under Intersection

e  The reader shows the following language L =

{0%192%3! | i = k and j = [} not to be a CFL.

O Intuitively, you need a variable and
productions like A — 0A2 | 02 to generate
the matching 0’s and 2’s, while you need
another variable to generate matching 1’s
and 3’s. But these variables would have
to generate strings that did not interleave.

e  However, the simpler language {07192%3! | i =
k} is a CFL.

0 A grammar:

S—S3|A
A— 042 | B
B—1B|e

e  Likewise the CFL {07172%3" | j = {}.

e  Their intersection 1s L.

Nonclosure of CFL’s Under Complement

e  Proof 1: Since CFL’s are closed under union,
if they were also closed under complement,
they would be closed under intersection by
DeMorgan’s law.

e  Proof 2: The complement of L above is a
CFL. Here is a PDA P recognizing it:

O Guess whether to check i # kor j # L.
Say we want to check ¢ # k.

O Aslong as 0’s come in, count them on the
stack.

O Ignore 1’s.
0 Pop the stack for each 2.

O As long as we have not just exposed the
bottom-of-stack marker when the first 3
comes in, accept, and keep accepting as
long as 3’s come in.

0 But we also have to accept, and keep
accepting, as soon as we see that the
input is not in L(0*1*2*3*).

Closure of CFL’s Under Reversal

Just reverse the body of every production.
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Closure of CFL’s Under Inverse
Homomorphism

PDA-based construction.

e Keep a “buffer” in which we place h(a) for
some input symbol a.

e  Read inputs from the front of the buffer (¢
OK).

e  When the buffer is empty, it may be reloaded
with h(b) for the next input symbol b, or we
may continue making e-moves.

Testing Emptiness of a CFL

As for regular languages, we really take a
representation of some language and ask whether
it represents 0.

e In this case, the representation can be a CFG

or PDA.

O  Our choice, since there are algorithms to
convert one to the other.

e  The test: Use a CFG; check if the start
symbol 1s useless?

Testing Finiteness of a CFL

e Let L be a CFL. Then there is some pumping-
lemma constant n for L.

e  Test all strings of length between n and 2n — 1
for membership (as in next section).

e  If there is any such string, it can be pumped,
and the language 1s infinite.

e  If there is no such string, then n — 1 is an
upper limit on the length of strings, so the
language is finite.

O Trick: If there were a string z = uvwzy
of length 2n or longer, you can find a
shorter string wwy in L, but it’s at most
n shorter. Thus, if there are any strings
of length 2n or more, you can repeatedly
cut out vz to get, eventually, a string
whose length is in the range n to 2n — 1.

Testing Membership of a String in a CFL

Simulating a PDA for L on string w doesn’t

quite work, because the PDA can grow its stack
indefinitely on € input, and we never finish, even if
the PDA 1is deterministic.



e  There is an O(n®) algorithm (n = length
of w) that uses a “dynamic programming”

technique.
O Called Cocke-Younger-Kasami (CYK)
algorithm.

e  Start with a CNF grammar for L.
e Build a two-dimensional table:
O Row = length of a substring of w.

O Column = beginning position of the
substring.

0 Entry in row ¢ and column j = set of
variables that generate the substring of
w beginning at position j and extending
for ¢ positions.

[0 In reader, these entries are denoted
X it+j—1, l.e., the subscripts are
the first and last positions of the
string represented, so the first row 1is
Xi1,X99,..., Xnn, the second row is
X12,X23,...,Xpn_1,n, and so on.

Basis: (row 1) X;; = the set of variables A such
that A — a is a production, and a is the symbol at
position i of w.

Induction: Assume the rows for substrings of
length up to m — 1 have been computed, and
compute the row for substrings of length m.

e  We can derive a;a;41 - - - a; from A if there is a
production A — BC', B derives any prefix of
a;ai41 - - - a;, and C' derives the rest.

e  Thus, we must ask if there is any value of &k

such that
O (<k<j.
O Bisin Xik~

0 C'1sin Xk-l-l,]"

Example

In class, we’ll work the table for the grammar:

S— AS | SB| AB
A—a
B—b

and the string aabb.



