
Inductive Proofs

Prove a statement S(X) about a family of objects
X (e.g., integers, trees) in two parts:

1. Basis: Prove for one or several small values of
X directly.

2. Inductive step: Assume S(Y ) for Y \smaller
than" X; prove S(X) using that assumption.

Example

A binary tree with n leaves has 2n� 1 nodes.

� Formally, S(T ): if T is a binary tree with n

leaves, then T has 2n� 1 nodes.

� Induction is on the size = number of nodes of
T .

Basis: If T has 1 leaf, it is a one-node tree. 1 =
2� 1� 1 so OK.

Induction: Assume S(U ) for trees with fewer
nodes than T . In particular, assume for the
subtrees of T .

� T must be a root plus two subtrees U and V .

� If U and V have u and v leaves, respectively,
and T has t leaves, then u+ v = t.

� By the inductive hypothesis, U and V have
2u� 1 and 2v � 1 nodes, respectively.

� Then T has 1 + (2u� 1) + (2v � 1) nodes.

✦ = 2(u+ v) � 1.

✦ = 2t� 1, proving the inductive step.

If-And-Only-If Proofs

Often, a statement we need to prove is of the form
\X if and only if Y ." We are then required to do
two things:

1. Prove the if-part : Assume Y and prove X.

2. Prove the only-if-part : Assume X, prove Y .

Remember:

� The if and only-if parts are converses of each
other.

� One part, say \if X then Y ," says nothing
about whether Y is true when X is false.

� An equivalent form to \if X then Y " is \if not
Y then not X"; the latter is the contrapositive

of the former.
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Equivalence of Sets

Many important facts in language theory are of
the form that two sets of strings, described in two
di�erent ways, are really the same set. To prove
sets S and T are the same, prove:

� x is in S if and only if x is in T . That is:

✦ Assume x is in S; prove x is in T .

✦ Assume x is in T ; prove x is in S.

Example: Balanced Parentheses

Here are two ways that we can de�ne \balanced
parentheses":

1. Grammatically :

a) The empty string � is balanced.

b) If w is balanced, then (w) is balanced.

c) If w and x are balanced, then so is wx.

2. By Scanning : w is balanced if and only if:

a) w has an equal number of left and right
parentheses.

b) Every pre�x of w has at least as many
left as right parentheses.

� Call these GB and SB properties, respectively.

� Theorem: a string of parentheses w is GB if
and only if it is SB.

If

An induction on jwj (length of w). Assume w is
SB; prove it is GB.

Basis: If w = � (length = 0), then w is GB by rule
(a).

� Notice that we do not even have to address
the question of whether � is SB (it is,
however).

Induction: Suppose the statement \SB implies
GB" is true for strings shorter than w.

1. Case 1: w is not �, but has no nonempty
pre�x that has an equal number of ( and ).
Then w must begin with ( and end with ); i.e.,
w = (x).

✦ x must be SB (why?).

✦ By the IH, x is GB.

✦ By rule (b), (x) is GB; but (x) = w, so w

is GB.
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2. Case 2: w = xy, where x is the shortest,
nonempty pre�x of w with an equal number
of ( and ), and y 6= �.

✦ x and y are both SB (why)?

✦ By the IH, x and y are GB.

✦ w is GB by rule (c).

Only-If

An induction on jwj. Assume w is GB; prove it is
SB.

Basis: w = �. Clearly w obeys the conditions for
being SB.

Induction: Assume \GB implies SB" for strings
shorter than w, and assume w 6= �.

1. Case 1: w is GB because of rule (b); i.e., w =
(x) and x is GB.

✦ by the IH, x is SB.

✦ Since x has equal numbers of ('s and )'s,
so does (x).

✦ Since x has no pre�x with more ('s than
)'s, so does (x).

2. Case 2: w is not � and is GB because of rule
(c); i.e., w = xy, and x and y are GB.

✦ By the IH, x and y are SB.

✦ (Aside) Trickier than it looks: we have
to argue that neither x nor y could be �,
because if one were, the other would be
w, and this rule application could not be
the one that �rst shows w to be GB.

✦ xy has equal numbers of ('s and )'s
because x and y both do.

✦ If w had a pre�x with more )'s than ('s,
that pre�x would either be a pre�x of
x (contradicting the fact that x has no
such pre�x) or it would be x followed by
a pre�x of y (contradicting the fact that y
also has no such pre�x).

✦ (Aside) Above is an example of proof by
contradiction. We assumed our conclusion
about w was false and showed it would
imply something that we know is false.
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Languages

� Alphabet = �nite set of symbols, e.g., f0; 1g
(binary alphabet) or ASCII.

� String = �nite sequence of symbols
chosen from some alphabet, e.g., 01101 or
abracadabra.

� Language = set of strings chosen from some
alphabet.

✦ Subtle point: the language may be
in�nite, but there is some �nite set
of symbols of which all its strings are
composed.

Example; Languages

� The set of all binary strings consisting of some
number of 0's followed by an equal number of
1's; that is, f�; 01; 0011; 000111; : : :g.

� C (the set of compilable C programs).

� English.

Finite Automata

An important way to describe certain simple, but
highly useful languages called \regular languages."

� A graph with a �nite number of nodes, called
states.

� Arcs are labeled with one or more symbols
from some alphabet.

� One state is designated the start state or
initial state.

� Some states are �nal states or accepting states.

� The language of the FA is the set of strings
that label paths that go from the start state
to some accepting state.

Example

� Below FA scans HTML documents, looking
for a list of what could be title-author pairs,
perhaps in a reading list for some literature
course.

� It accepts whenever it �nds the end of a list
item.
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� In an application, the strings that matched
the title (before ' by ') and author (after)
would be stored in a table of title-author pairs
being accumulated.

<OL>, <UL>

1 2 3

4

5

6

789

<LI>

space

b

y

space

</LI></OL>, </UL>

<LI>

any non-tag

any non-tag

Start
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