CHAPTER

Parallel and
sequential
operation

0
= 13.1

13

Using Logic
to
Design

Computer Components

In this chapter we shall see that the propositional logic studied in the previous
chapter can be used to design digital electronic circuits. Such circuits, found in
every computer, use two voltage levels (“high” and “low”) to represent the binary
values 1 and 0. In addition to gaining some appreciation for the design process,
we shall see that algorithm-design techniques, such as “divide-and-conquer,” can
also be applied to hardware. In fact, it is important to realize that the process of
designing a digital circuit to perform a given logical function is quite similar in spirit
to the process of designing a computer program to perform a given task. The data
models differ significantly, and frequently circuits are designed to do many things
in parallel (at the same time) while common programming languages are designed
to execute their steps sequentially (one at a time). However, general programming
techniques like modularizing a design are as applicable to circuits as they are to
programs.

What This Chapter is About

This chapter covers the following concepts from digital circuit design:

O The notion of a gate, an electronic circuit that performs a logical operation
(Section 13.2).

O How gates are organized into circuits (Section 13.3).

O Certain kinds of circuits, called combinational, that are an electronic equivalent
of logical expressions (Section 13.4).

0 Physical constraints under which circuits are designed, and what properties
circuits must have to produce their answers quickly (Section 13.5).

699



0
=a 13.2

Inverter

700 USING LOGIC TO DESIGN COMPUTER COMPONENTS

O Two interesting examples of circuits: adders and multiplexers. Sections 13.6
and 13.7 show how a fast circuit can be designed for each problem using a
divide-and-conquer technique.

0 The memory element as an example of a circuit that remembers its input. In
contrast, a combinational circuit cannot remember inputs received in the past

(Section 13.8).

Gates

A gate is an electronic device with one or more inputs, each of which can assume
either the value 0 or the value 1. As mentioned earlier, the logical values 0 and
1 are generally represented electronically by two different voltage levels, but the
physical method of representation need not concern us. A gate usually has one
output, which is a function of its inputs, and which is also either 0 or 1.

(a) AND (b) OR (c) NOT

(d) NAND (e) NOR

Fig. 13.1. Symbols for gates.

Each gate computes some particular Boolean function. Most electronic “tech-
nologies” (ways of manufacturing electronic circuits) favor the construction of gates
for certain Boolean functions and not others. In particular, AND- and OR-gates are
usually easy to build, as are NOT-gates, which are called inverters. AND- and OR-gates
can have any number of inputs, although, as we discuss in Section 13.5, there is
usually a practical limitation on how many inputs a gate can have. The output of
an AND-gate is 1 if all its inputs are 1, and its output is 0 if any one or more of its
inputs are 0. Likewise, the output of an OR-gate is 1 if one or more of its inputs are
1, and the output is 0 if all inputs are 0. The inverter (NOT-gate) has one input; its
output is 1 if its input is 0 and 0 if its input is 1.

We also find it easy to implement NAND- and NOR-gates in most technologies.
The NAND-gate produces the output 1 unless all its inputs are 1, in which case
it produces the output 0. The NOR-gate produces the output 1 when all inputs
are 0 and produces 0 otherwise. An example of a logical function that is harder
to implement electronically is equivalence, which takes two inputs x and y and
produces a 1 output if x and y are both 1 or both 0, and a 0 output when exactly



0
= 13.3

Circuit inputs
and outputs

SEC. 13.3 CIRCUITS 701

one of x and y is 1. However, we can build equivalence circuits out of AND-, OR-,
and NOT-gates by implementing a circuit that realizes the logical function xy + Zg.

The symbols for the gates we have mentioned are shown in Fig. 13.1. In each
case except for the inverter (NOT-gate), we have shown the gate with two inputs.
However, we could easily show more than two inputs, by adding additional lines. A
one-input AND- or OR-gate is possible, but doesn’t really do anything; it just passes
its input to the output. A one-input NAND- or NOR-gate is really an inverter.

Circuits

Gates are combined into circuits by connecting the outputs of some gates to the
inputs of others. The circuit as a whole has one or more inputs, each of which can
be inputs to various gates within the circuit. The outputs of one or more gates are
designated circuit outputs. If there is more than one output, then an order for the
output gates must be specified as well.

Fig. 13.2. Equivalence circuit: z is the expression x = y.



702 USING LOGIC TO DESIGN COMPUTER COMPONENTS

Example 13.1. Figure 13.2 shows a circuit that produces as output z, the
equivalence function of inputs « and y. Conventionally, we show inputs at the top.
Both inputs z and y are fed to gate A, which is an AND-gate, and which therefore
produces a 1 output when (and only when) z =y = 1. Also, x and y are inverted
by NOT-gates B and C respectively, and the outputs of these inverters are fed to
AND-gate D. Thus, the output of gate D is 1 if and only if both z and y are 0. Since
the outputs of gates A and D are fed to OR-gate E, we see that the output of that
gate is 1 if and only if either z =y =1 or # = y = 0. The table in Fig. 13.3 gives
a logical expression for the output of each gate.

Thus, the output z of the circuit, which is the output of gate F, is 1 if and only
if the logical expression xy + Ty has value 1. Since this expression is equivalent to
the expression x = y, we see that the circuit output is the equivalence function of
its two inputs. [

GATE | OUTPUT OF GATE
zy

I

Kl
<

Do QT
<

Ty +

<

Fig. 13.3. Outputs of gates in Fig. 13.2.

Combinational and Sequential Circuits

There is a close relationship between the logical expressions we can write using
a collection of logical operators, such as AND, OR, and NOT, on one hand, and the
circuits built from gates that perform the same set of operators, on the other hand.
Before proceeding, we must focus our attention on an important class of circuits
called combinational circuits. These circuits are acyclic, in the sense that the output
of a gate cannot reach its input, even through a series of intermediate gates.

We can use our knowledge of graphs to define precisely what we mean by a
combinational circuit. First, draw a directed graph whose nodes correspond to the
gates of the circuit. Add an arc u — v if the output of gate u is connected directly
to any input of gate v. If the circuit’s graph has no cycles, then the circuit is
combinational; otherwise, it is sequential.

Example 13.2. In Fig. 13.4 we see the directed graph that comes from the
circuit of Fig. 13.2. For example, there is an arc A — E because the output of gate
A is connected to an input of gate E. The graph of Fig. 13.4 clearly has no cycles;
in fact, it is a tree with root E, drawn upside-down. Thus, we conclude that the
circuit of Fig. 13.2 is combinational.

On the other hand, consider the circuit of Fig. 13.5(a). There, the output of
gate A is an input to gate B, and the output of B is an input to A. The graph
for this circuit is shown in Fig. 13.5(b). It clearly has a cycle, so that the circuit is
sequential.



SEC. 13.3 CIRCUITS 703

Fig. 13.4. Directed graph constructed from the circuit of Fig. 13.2.

>

(a) The circuit.

(b) Its graph.

Fig. 13.5. Sequential circuit and its graph.

Suppose inputs  and y to this circuit are both 1. Then the output of B is
surely 1, and therefore, both inputs to the AND-gate A are 1. Thus, this gate will
produce output 1. Now we can let input y become 0, and the output of OR-gate B
will remain 1, because its other input (the input from the output of A) is 1. Thus,
both inputs to A remain 1, and its output is 1 as well.

However, suppose  becomes 0, whether or not y is 0. Then the output of gate
A, and therefore the circuit output z, must be 0. We can describe the circuit output
z as 1 if, at some time in the past, both « and y were 1 and since then = (but not
necessarily y) has remained 1. Figure 13.6 shows the output as a function of time
for various input value combinations; the low level represents 0 and the elevated



Parity function

Majority
function

704 USING LOGIC TO DESIGN COMPUTER COMPONENTS

Fig. 13.6. Output as a function of time, for the circuit of Fig. 13.5(a).

Sequential Circuits and Automata

There is a close relationship between the deterministic finite automata that we
discussed in Chapter 10 and sequential circuits. While the subject is beyond the
scope of this book, given any deterministic automaton, we can design a sequential
circuit whose output is 1 exactly when the sequence of inputs of the automaton is
accepted. To be more precise, the inputs of the automaton, which may be from
any set of characters, must be encoded by the appropriate number of logical inputs
(which each take the value 0 or 1); k logical inputs to the circuit can code up to 2¥
characters.

level represents 1. [J

We shall discuss sequential circuits briefly at the end of this chapter. As we just
saw in Example 13.2, sequential circuits have the ability to remember important
things about the sequence of inputs seen so far, and thus they are needed for key
components of computers, such as main memory and registers. Combinational cir-
cuits, on the other hand, can compute the values of logical functions, but they must
work from a single setting for their inputs, and cannot remember what the inputs
were set to previously. Nevertheless, combinational circuits are also vital compo-
nents of computers. They are needed to add numbers, decode instructions into the
electronic signals that cause the computer to perform those instructions, and many
other tasks. In the following sections, we shall devote most of our attention to the
design of combinational circuits.

EXERCISES

13.3.1: Design circuits that produce the following outputs. You may use any of
the gates shown in Fig. 13.1.

a) The parity, or sum-mod-2, function of inputs z and y that is 1 if and only if
exactly one of x and y is 1.

b) The majority function of inputs w, x, y, and z that is 1 if and only if three or
more of the inputs are 1.



0
=a 13.4

SEC. 13.4 LOGICAL EXPRESSIONS AND CIRCUITS 705

¢) The function of inputs w, z, y, and z that is 1 unless all or none of the inputs
are 1.

d) The exclusive-or function @ discussed in Exercise 12.4.7.

13.3.2*: Suppose the circuit of Fig. 13.5(a) is modified so that both gates A and B
are AND-gates, and both inputs = and y are initially 1. As the inputs change, under
what circumstances will the output be 17

13.3.3*: Repeat Exercise 13.3.2 if both gates are OR-gates.

Logical Expressions and Circuits

It is relatively simple to build a circuit whose output, as a function of its inputs, is
the same as that of a given logical expression. Conversely, given a combinational
circuit, we can find a logical expression for each circuit output, as a function of its
inputs. The same is not true of a sequential circuit, as we saw in Example 13.2.

From Expressions to Circuits

Given a logical expression with some set of logical operators, we can construct from
it a combinational circuit that uses gates with the same set of operators and realizes
the same Boolean function. The circuit we construct will always have the form of a
tree. We construct the circuit by a structural induction on the expression tree for
the expression.

BASIS. If the expression tree is a single node, the expression can only be an input,
say x. The “circuit” for this expression will be the circuit input x itself.

Fig. 13.7. Expression tree for expression 0(E1, E, ..., Ey).

INDUCTION. For the induction, suppose that the expression tree in question is
similar to Fig. 13.7. There is some logical operator, which we call 6, at the root;
f might be AND or OR, for example. The root has n subtrees for some n, and the
operator  is applied to the results of these subtrees to produce a result for the
whole tree.

Since we are performing a structural induction, we may assume that the in-
ductive hypothesis applies to the subexpressions. Thus, there is a circuit Cy for
expression E1, circuit Cy for Es, and so on.

To build the circuit for E, we take a gate for the operator # and give it n
inputs, one from each of the outputs of the circuits Cy,Cy,...,C,, in that order.



706 USING LOGIC TO DESIGN COMPUTER COMPONENTS

circuit inputs

|

—

Gy C e Cn

circuit output

Fig. 13.8. The circuit for (En,. .., En) where C; is the circuit for E;.

The output of the circuit for E is taken from the 6-gate just introduced. The
construction is suggested in Fig. 13.8.

The circuit we have constructed computes the expression in the obvious way.
However, there may be circuits producing the same output function with fewer gates
or fewer levels. For example, if the given expression is (z + y)z + (z + y)w, then
the circuit we construct will have two occurrences of the subcircuit that realizes the
common expression x +y. We can redesign the circuit to use just one occurrence of
this subcircuit, and feed its output everywhere the common subexpression is used.

There are other more radical transformations that we can make to improve the
design of circuits. Circuit design, like the design of efficient algorithms, is an art,
and we shall see a few of the important techniques of this art later in this chapter.

From Circuits to Logical Expressions

Now let us consider the inverse problem, constructing a logical expression for an
output of a combinational circuit. Since we know that the graph of the circuit is
acyclic, we can pick a topological order of its nodes (i.e., of its gates), with the
property that if the output of the ith gate in the order feeds an input of the jth
gate in the order, then ¢ must be less than j.

Example 13.3. One possible topological order of the gates in the circuit of Fig.
13.2 is ABCDE, and another is BCDAE. However, ABDCEF is not a topological
order, since gate C feeds gate D, but D appears before C' in this sequence. [



One-bit adder

SEC. 13.4 LOGICAL EXPRESSIONS AND CIRCUITS 707

To build the expression from the circuit, we use an inductive construction. We
shall show by induction on ¢ the statement

STATEMENT S5(i): For the first 7 gates in the topological order, there are logical
expressions for the output of these gates.

BASIS. The basis will be ¢ = 0. Since there are zero gates to consider, there is
nothing to prove, so the basis part is done.

INDUCTION. For the induction, look at the ith gate in the topological order.
Suppose gate i’s inputs are Iy, I, ..., I;. If I is a circuit input, say , then let the
expression F; for input I; be x. If input I; is the output of some other gate, that
gate must precede the ith gate in the topological order, which means that we have
already constructed some expression E; for the output of that gate. Let the operator
associated with gate i be . Then an expression for gate i is 0(E1, Fa, . .., E). In the
common case that § is a binary operator for which infix notation is conventionally
used, the expression for gate i can be written (E7)0(FE>). The parentheses are placed
there for safety, although depending on the precedence of operators, they may or
may not be necessary.

Example 13.4. Let us determine the output expression for the circuit in Fig.
13.2, using the topological order ABCDFE for the gates. First, we look at AND-gate
A. Tts two inputs are from the circuit inputs z and y, so that the expression for the
output of A is zy.

Gate B is an inverter with input x, so that its output is Z. Similarly, gate C'
has output expression §. Now we can work on gate D, which is an AND-gate with
inputs taken from the outputs of B and C. Thus, the expression for the output of
D is zy. Finally, gate E is an OR-gate, whose inputs are the outputs of A and D.
We thus connect the output expressions for these gates by the OR operator, to get
the expression xy + Zgy as the output expression for gate E. Since F is the only
output gate of the circuit, that expression is also the circuit output. Recall that the
circuit of Fig. 13.2 was designed to realize the Boolean function x = y. It is easy to
verify that the expression we derived for gate E is equivalent to z = y. O

Example 13.5. In the previous examples, we have had only one circuit output,
and the circuit itself has been a tree. Neither of these conditions holds generally.
We shall now take up an important example of the design of a circuit with multiple
outputs, and where some gates have their output used as input to several gates.
Recall from Chapter 1 that we discussed the use of a one-bit adder in building a
circuit to add binary numbers. A one-bit adder circuit has two inputs = and y that
represent the bits in some particular position of the two numbers being added. It
has a third input, ¢, that represents the carry-in to this position from the position
to the right (next lower-order position). The one-bit adder produces as output the
following two bits:

1.  The sum bit z, which is 1 if an odd number of z, y, and c are 1, and
2. The carry-out bit d, which is 1 if two or more of z, y, and ¢ are 1.



708 USING LOGIC TO DESIGN COMPUTER COMPONENTS

Circuit Diagram Convention

When circuits are complicated, as is the circuit in Fig. 13.10, there is a useful
convention that helps simplify the drawing. Often, we need to have “wires” (the
lines between an output and the input(s) to which it is connected) cross, without
implying that they are part of the same wire. Thus, the standard convention for
circuits says that wires are not connected unless, at the point of intersection, we
place a dot. For example, the vertical line from the circuit input ¥ is not connected
to the horizontal lines labeled = or Z, even though it crosses those lines. It is
connected to the horizontal line labeled y, because there is a dot at the point of
intersection.

yc ye
00 01 11 10 00 01 11 10
0 0 1 0 1 0 0 0 1 0
x x
1 1 0 1 0 1 0 1 1 1
(a) sum z (b) carry-out d

Fig. 13.9. Karnaugh maps for the sum and carry-out functions.

In Fig. 13.9 we see Karnaugh maps for z and d, the sum and carry-out functions
of the one-bit adder. Of the eight possible minterms, seven appear in the functions
for z or d, and only one, xyc, appears in both.

A systematically designed circuit for the one-bit adder is shown in Fig. 13.10.
We begin by taking the circuit inputs and inverting them, using the three inverters
at the top. Then we create AND-gates for each of the minterms that we need in
one or more outputs. These gates are numbered 1 through 7, and each integer
tells us which of its inputs are “true” circuit inputs, z, y, or ¢, and which are
“complemented” inputs, Z, ¢, or ¢. That is, write the integer as a 3-bit binary
number, and regard the bits as representing x, y, and ¢, in that order. For example,
gate 4, or (100)2, has input x true and inputs y and ¢ complemented; that is, it
produces the output expression zyc. Notice that there is no gate 0 here, because
the minterm Zgc is not needed for either output.

Finally, the circuit outputs, z and d, are assembled with OR-gates at the bottom.
The OR-gate for z has inputs from the output of each AND-gate whose minterm makes
z true, and the inputs to the OR-gate for d are selected similarly.

Let us compute the output expressions for the circuit of Fig. 13.10. The topo-
logical order we shall use is the inverters first, then the AND-gates 1,2,...,7, and
finally the OR-gates for z and d. First, the three inverters obviously have output
expressions Z, 7, and ¢. Then we already mentioned how the inputs to the AND-gates
were selected and how the expression for the output of each is associated with the



SEC. 13.4 LOGICAL EXPRESSIONS AND CIRCUITS 709

S]]

8

NS

ol

Fig. 13.10. One-bit-adder circuit.

binary representation of the number of the gate. Thus, gate 1 has output expression
Zyc. Finally, the output of the OR-gate z is the OR of the output expressions for
gates 1, 2, 4, and 7, that is

Tyc + Tyc + ryc + ryc

Similarly, the output of the OR-gate for d is the OR of the output expressions for
gates 3, 5, 6, and 7, which is

Tyc + xyc + xryc + ryc
We leave it as an exercise to show that this expression is equivalent to the expression

yc+ xc+xy



710 USING LOGIC TO DESIGN COMPUTER COMPONENTS

that we would get if we worked from the Karnaugh map for d alone. [

EXERCISES

13.4.1: Design circuits for the following Boolean functions. You need not restrict
yourself to 2-input gates if you can group three or more operands that are connected
by the same operator.

a) x+y+ z. Hint: Think of this expression as OR(z,y, 2).

b) xzy+axz+yz

¢) x+(yr)(y+2)

13.4.2: For each of the circuits in Fig. 13.11, compute the logical expression for

each gate. What are the expressions for the outputs of the circuits? For circuit (b)
construct an equivalent circuit using only AND, OR, and NOT gates.

— <

— <

N N

output output

(a) (b)
Fig. 13.11. Circuits for Exercise 13.4.2.

13.4.3: Prove the following tautologies used in Examples 13.4 and 13.5:

a) (ry+1y)=(r=y)
b) (Zyc+ xjc+ zyc + zyc) = (ye+ zc + xy)



Feature size

Micron

0
= 13.5

Integrated
circuits

Circuit delay

SEC. 13.5 SOME PHYSICAL CONSTRAINTS ON CIRCUITS 711

Chips

Chips generally have several “layers” of material that can be used, in combination,
to build gates. Wires can run in any layer, to interconnect the gates; wires on
different layers usually can cross without interacting. The “feature size,” roughly
the minimum width of a wire, is in 1994 usually below half a micron (a micron is
0.001 millimeter, or about 0.00004 inches). Gates can be built in an area several
microns on a side.

The process by which chips are fabricated is complex. For example, one step
might deposit a thin layer of a certain substance, called a photoresist, all over a
chip. Then a photographic negative of the features desired on a certain layer is
used. By shining light or a beam of electrons through the negative, the top layer
can be etched away in places where the beam shines through, leaving only the
desired circuit pieces.

Some Physical Constraints on Circuits

Today, most circuits are built as “chips,” or integrated circuits. Large numbers of
gates, perhaps as many as millions of gates, and the wires interconnecting them,
are constructed out of semiconductor and metallic materials in an area about a
centimeter (0.4 inches) on a side. The various “technologies,” or methods of con-
structing integrated circuits, impose a number of constraints on the way efficient
circuits can be designed. For example, we mentioned earlier that certain types of
gates, such as AND, OR, and NOT, are easier to construct than other kinds.

Circuit Speed

Associated with each gate is a delay, between the time that the inputs become active
and the time that the output becomes available. This delay might be only a few
nanoseconds (a nanosecond is 1072 seconds), but in a complex circuit, such as the
central processing unit of a computer, information propagates through many levels
of gates, even during the execution of a single instruction. As modern computers
perform instructions in much less than a microsecond (which is 1076 seconds), it is
evidently imperative that the number of gates through which a value must propagate
be kept to a minimum.

Thus, for a combinational circuit, the maximum number of gates that lie along
any path from an input to an output is analogous to the running time of a program
as a figure of merit. That is, if we want our circuits to compute their outputs fast,
we must minimize the longest path length in the graph of the circuit. The delay of
a circuit is the number of gates on the longest path — that is, one plus the length
of the path equals the delay. For example, the adder of Fig. 13.10 has delay 3, since
the longest paths from input to output go through one of the inverters, then one
of the AND-gates, and finally, through one of the OR-gates; there are many paths of
length 3.

Notice that, like running time, circuit delay only makes sense as an “order of
magnitude” quantity. Different technologies will give us different values of the time
that it takes an input of one gate to affect the output of that gate. Thus, if we have
two circuits, of delay 10 and 20, respectively, we know that if implemented in the



Propagation
delay

712 USING LOGIC TO DESIGN COMPUTER COMPONENTS

same technology, with all other factors being equal, the first will take half the time
of the second. However, if we implement the second circuit in a faster technology,
it could beat the first circuit implemented in the original technology.

Size Limitations

The cost of building a circuit is roughly proportional to the number of gates in the
circuit, and so we would like to reduce the number of gates. Moreover, the size of
a circuit also influences its speed, and small circuits tend to run faster. In general,
the more gates a circuit has, the greater the area on a chip that it will consume.
There are at least two negative effects of using a large area.

1. If the area is large, long wires are needed to connect gates that are located far
apart. The longer a wire is, the longer it takes a signal to travel from one end
to the other. This propagation delay is another source of delay in the circuit,
in addition to the time it takes a gate to “compute” its output.

2. There is a limit to how large chips can be, because the larger they are, the
more likely it is that there will be an imperfection that causes the chip to fail.
If we have to divide a circuit across several chips, then wires connecting the
chips will introduce a severe propagation delay.

Our conclusion is that there is a significant benefit to keeping the number of gates
in a circuit low.

Fan-In and Fan-Out Limitations

A third constraint on the design of circuits comes from physical realities. We pay a
penalty for gates that have too many inputs or that have their outputs connected
to too many other inputs. The number of inputs of a gate is called its fan-in, and
the number of inputs to which the output of a gate is connected is that gate’s fan-
out. While, in principle, there is no limit on fan-in or fan-out, in practice, gates
with large fan-in and/or fan-out will be slower than gates with smaller fan-in and
fan-out. Thus, we shall try to design our circuits with limited fan-in and fan-out.

Example 13.6. Suppose a particular computer has registers of 32 bits, and
we wish to implement, in circuitry, the COMPARE machine instruction. One of the
things we have to build is a circuit that tests whether a register has all 0’s. This
test is implemented by an OR-gate with 32 inputs, one for each bit of the register.
An output of 1 means the register does not hold 0, while an output of 0 means that
it does.! If we want 1 to mean a positive answer to the question, “Does the register
hold 0,” then we would complement the output with an inverter, or use a NOR gate.

However, a fan-in of 32 is generally much higher than we would like. Suppose
we were to limit ourselves to gates with a fan-in of 2. That is probably too low
a limit, but will serve for an example. First, how many two-input OR-gates do we
need to compute the OR of n inputs? Clearly, each 2-input gate combines two values
into one (its output), and thus reduces by one the number of values we need to
compute the OR of n inputs. After we have used n — 1 gates, we shall be down to

1 Strictly speaking, this observation is true only in 2’s complement notation. In some other
notations, there are two ways to represent 0. For example, in sign-and-magnitude, we would
test only whether the last 31 bits are 0.



SEC. 13.5 SOME PHYSICAL CONSTRAINTS ON CIRCUITS 713

one value, and if we have designed the circuit properly, that one value will be the
OR of all n original values. Thus, we need at least 31 gates to compute the OR of 32
bitS, T1,22,...,T32.

T1 X2 €3 Ty I32

Fig. 13.12. Slow way to take the OR of 32 bits.

A naive way to do this OR is shown in Fig. 13.12. There, we group the bits in
a left-associative way. As each gate feeds the next, the graph of the circuit has a
path with 31 gates, and the delay of the circuit is 31.

A better way is suggested in Fig. 13.13. A complete binary tree with five levels
uses the same 31 gates, but the delay is only 5. We would expect the circuit of Fig.
13.13 therefore to run about six times faster than the circuit of Fig. 13.12. Other
factors that influence speed might reduce the factor of six, but even for a “small”
number of bits like 32, the clever design is significantly faster than the naive design.

If one doesn’t immediately “see” the trick of using a complete binary tree as a
circuit, one can obtain the circuit of Fig. 13.13 by applying the divide-and-conquer



714 USING LOGIC TO DESIGN COMPUTER COMPONENTS

Tyl X2 3 T4 T5 Te Z7 Tg Z29T30 T31732

VY Y
VoY

Fig. 13.13. Complete binary tree of OR-gates.

Divide and paradigm. That is, to take the OR of 2F bits, we divide the bits into two groups of

conquer circuits 2%=1 hits each. Circuits for each of the two groups are combined by a final OR-gate,
as suggested in Fig. 13.14. Of course, the circuit for the basis case k = 1 (i.e.,
two inputs) is provided not by divide-and-conquer, but by using a single two-input
OR-gate. [

EXERCISES

13.5.1*: Suppose that we can use OR-gates with fan-in of k, and we wish to take
the OR of n inputs, where n is a power of k. What is the minimum possible delay
for such a circuit? What would be the delay if we used a naive “cascading” circuit
as shown in Fig. 13.127



SEC. 13.5 SOME PHYSICAL CONSTRAINTS ON CIRCUITS 715

13.5.2*: Design divide-and-conquer circuits to perform the following operations.
What is the delay of each of your circuits?

a) Given inputs x1, s, ..., Ty, produce a 1 output if and only if all inputs are 1.

b) Given inputs x1,xa, ..., &, and y1,Y2, ..., Yn, produce a 1 output if and only if
each x; equals y;, for ¢ = 1,2,...,n. Hint: Use the circuit of Fig. 13.2 to test
whether two inputs are equal.

13.5.3*: The divide-and-conquer approach of Fig. 13.14 works even when the num-
ber of inputs is not a power of two. Then the basis must include sets of two or three
inputs; three-input sets are handled by two OR-gates, one feeding the other, assum-
ing we wish to keep strictly to our fan-in limitation of two. What is the delay of
such circuits, as a function of the number of inputs?

13.5.4: First-string commandos are ready, willing, and able. Suppose we have n
commandos, and circuit inputs r;, w;, and a; indicate, respectively, whether the ith
commando, is ready, willing, and able. We only want to send the commando team
on a raid if they all are ready, willing, and able. Design a divide-and-conquer circuit
to indicate whether we can send the team on a raid.

13.5.5%: Second-string commandos (read Exercise 13.5.4) aren’t as professional.
We are willing to send them on a raid if each is either ready, willing, or able. In
fact, we’ll send the team even if at most one of the commandos is neither ready,
willing, nor able. Using the same inputs as Exercise 13.5.4, devise a divide-and-
conquer circuit that will indicate whether we can send the second-string commando
team on a raid.

T T2 Tn/2 Tn/241 Tnj242 Tn
circuit for circuit for
one half other half

Fig. 13.14. Divide-and-conquer approach to circuit design.



0
= 13.6

716 USING LOGIC TO DESIGN COMPUTER COMPONENTS

A Divide-and-Conquer Addition Circuit

One of the key parts of a computer is a circuit that adds two numbers. While
actual microprocessor circuits do more, we shall study the essence of the problem
by designing a circuit to add two nonnegative integers. This problem is quite
instructive as an example of divide-and-conquer circuit design.

We can build an adder for n-bit numbers from n one-bit adders, connected in
one of several ways. Let us suppose that we use the circuit of Fig. 13.10 as a one-
bit-adder circuit. This circuit has a delay of 3, which is close to the best we can do.?
The simplest approach to building an adder circuit is the ripple-carry adder which
we saw in Section 1.3. In this circuit, an output of each one-bit adder becomes an
input of the next one-bit adder, so that adding two n-bit numbers incurs a delay of
3n. For example, in the case where n = 32, the circuit delay is 96.

A Recursive Addition Circuit

We can design an adder circuit with significantly less delay if we use the divide-and-
conquer strategy of designing a circuit for n/2 bits and using two of them, together
with some additional circuitry, to make an n-bit adder. In Example 13.6, we spoke
of a divide-and-conquer circuit for taking the OR of many bits, using 2-input OR-
gates. That was a particularly simple example of the divide-and-conquer technique,
since each of the smaller circuits performed exactly the desired function (OR), and
the combination of outputs of the subcircuits was very simple (they were fed to an
OR-gate). The two half-size circuits did their work at the same time (in parallel), so
their delays did not add.

For the adder, we need to do something more subtle. A naive way to start is
to add the left half of the bits (high-order bits) and add the right half of the bits
(low-order bits), using identical half-size adder circuits. However, unlike the n-bit
OR example, where we could work on the left and right halves independently, it
seems that for the adder, the addition for the left half cannot begin until the right
half is finished and passes its carry to the rightmost bit in the left half, as suggested
in Fig. 13.15. If so, we shall find that the “divide-and-conquer” circuit is actually
identical to the ripple-carry adder, and we have not improved the delay at all.

The additional “trick” we need is to realize that we can begin the computation
of the left half without knowing the carry out of the right half, provided we compute
more than just the sum. We need to answer two questions. First, what would the
sum be if there is no carry into the rightmost place in the left half, and second, what
would the sum be if there is a carry-in??> We can then allow the circuits for the left
and right halves to compute their two answers at the same time. Once both have
been completed, we can tell whether or not there is a carry from the right half to
the left. That tells us which answer is correct, and with three more levels of delay,
we can select the correct answer for the left side. Thus, the delay to add n bits
will be just three more than the delay to add n/2 bits, leading to a circuit of delay
3(1 4+ logyn). That compares very well with the ripple-carry adder for n = 32; the
divide-and-conquer adder will have delay 3(1 + log, 32) = 3(1+5) = 18, compared
with 96 for the ripple-carry adder.

2 We can design a more complicated one-bit-adder circuit with delay 2 by complementing all
the inputs outside the full adder and computing both the carry and its complement within
the full adder.

3 Note “there is a carry-in” means the carry-in is 1; “no carry-in” means the carry-in is 0.



n-adder

SEC. 13.6 A DIVIDE-AND-CONQUER ADDITION CIRCUIT 717

1 Y1 T T2 Yny2 carry Tn/241 Yn/2+1 " In Yn
left-half right-half
adder adder
Z1 22 cee Zn/2 Zn/24+1 Znj2+42 " Zn

Fig. 13.15. An inefficient divide-and-conquer design for an adder.

More precisely, we define an n-adder to be a circuit with inputs x1, z2,...,z,
and y1, Y2, ..., Yn, representing two n-bit integers, and outputs
1. s1,89,..., 8y, the n-bit sum (excluding a carry out of the leftmost place, i.e.,

out of the place belonging to 1 and y;) of the inputs, assuming that there is
no carry into the rightmost place (the place of x,, and y,,).

2. t1,ta,...,t,, the n-bit sum of the inputs, assuming that there is a carry into
the rightmost place.

3. p, the carry-propagate bit, which is 1 if there is a carry out of the leftmost
place, on the assumption that there is a carry into the rightmost place.

4. g, the carry-generate bit, which is 1 if there is a carry out of the leftmost place,
even if there is no carry into the rightmost place.

Note that g — p; that is, if g is 1, then p must be 1. However, g can be 0, and p
still be 1. For example, if the z’s are 1010 - - , and the y’s are 0101 - -- | then g = 0,
because when there is no carry in, the sum is all 1’s and there is no carry out of the
leftmost place. On the other hand, if there is a carry into the rightmost position,
then the last n bits of the sum are all 0’s, and there is a carry out of the leftmost
place; thus p = 1.

We shall construct an n-adder recursively, for n a power of 2.

BASIS. Consider the case n = 1. Here we have two inputs,  and y, and we need
to compute four outputs, s, ¢, p, and g, given by the logical expressions

Ss=xy+IY
t=xy+ 2y
g=xy
p=x+y

To see why these expressions are correct, first assume there is no carry into
the one place in question. Then the sum bit, which is 1 if an odd number of z, y,
and the carry-in are 1, will be 1 if exactly one of x and y is 1. The expression for
s above clearly has that property. Further, with no carry-in, there can only be a



718 USING LOGIC TO DESIGN COMPUTER COMPONENTS

Kl

<

v Y Y

Fig. 13.16. Base case: a 1-adder.

carry-out if both x and y are 1, which explains the expression for g above.

Now suppose that there is a carry-in. Then for an odd number of x, y, and the
carry-in to be 1, it must be that both or neither of x and y are 1, explaining the
expression for t. Also, there will now be a carry-out if either one or both of x and
y are 1, which justifies the expression for p. A circuit for the basis is shown in Fig.
13.16. It is similar in spirit to the full adder of Fig. 13.10, but is actually somewhat
simpler, because it has only two inputs instead of three.

INDUCTION. The inductive step is illustrated in Fig. 13.17, where we build a 2n-
adder from two n-adders. A 2n-adder is composed of two n-adders, followed by two
pieces of circuitry labeled FIX in Fig. 13.17, to handle two issues:

1. Computing the carry propagate and generate bits for the 2n-adder

2. Adjusting the left half of the s’s and t’s to take into account whether or not
there is a carry into the left half from the right

First, suppose that there is a carry into the right end of the entire circuit for the



SEC. 13.6 A DIVIDE-AND-CONQUER ADDITION CIRCUIT 719

1 Y1 In  Yn Tn+1Yn+1 Tan Y2n
| L
n-adder n-adder
gt pf sk tbes, kot g® pR s R R Bt R
FIX
NN
g p s1 u Sn tn Spyilnt1 Son lon

Fig. 13.17. Sketch of the divide-and-conquer adder.

2n-adder. Then there will be a carry out at the left end of the entire circuit if either
of the following hold:

a) Both halves of the adder propagate a carry; that is, p“p® is true. Note this
expression includes the case when the right half generates a carry and the left
half propagates it. Then p”g® is true, but g% — pf?, so (pLpf+plg?) = prpt.

b) The left half generates a carry; that is, g” is true. In this case, the existence
of a carry-out on the left does not depend on whether or not there is a carry
into the right end, or on whether the right half generates a carry.

Thus, the expression for p, the carry-propagate bit for the 2n-adder, is

p=g"+ppt

Now assume there is no carry-in at the right end of the 2n-adder. Then there
is a carry-out at the left end of the 2n-adder if either
a) The right half generates a carry and the left half propagates it, or
b) The left half generates a carry.

Thus, the logical expression for g is
g=g"+ptg"

Now let us turn our attention to the s;’s and the t;’s. First, the right-half bits
are unchanged from the outputs of the right n-adder, because the presence of the
left half has no effect on the right half. Thus, s,4; = 5,7, and t,,; = t;%, for
i=1,2,...,n.

The left-half bits must be modified, however, to take into account the ways in
which the right half can generate a carry. First, suppose that there is no carry-in

at the right end of the 2n-adder. This is the situation that the s;’s are supposed
to tell us about, so that we can develop expressions for the s;’s on the left, that



720 USING LOGIC TO DESIGN COMPUTER COMPONENTS

is, s1,82,...,8,. Since there is no carry-in for the right half, there is a carry-in for
the left half only if a carry is generated by the right half. Thus, if g% is true, then
s; = ;¥ (since the ;s tell us about what happens when there is a carry into the
left half). If gR is false, then s; = s;© (since the s;%’s tell us what happens when
there is no carry into the left half). As a logical expression, we can write

si = sitglt +t;lgh

fori=1,2,...,n.

Finally, consider what happens when there is a carry-in at the right end of the
2n-adder. Now we can address the question of the values for the t;’s on the left as
follows. There will be a carry into the left half if the right half propagates a carry,
that is, if p© = 1. Thus, t; takes its value from ;% if pf is true and from s; = if pft
is false. As a logical expression,

ti = si"p" + 1, p"

In summary, the circuits represented by the box labeled FIX in Fig. 13.17
compute the following expressions:

p=g"+p-p"
g=g" +ptg"
s; = st gt +t;Lgl fori=1,2,...,n

ti = SiLﬁR—FtinR, fori=1,2,...,n

These expressions can each be realized by a circuit of at most three levels. For
example, the last expression needs only the circuit of Fig. 13.18.

L R L
S; p t;

N

Fig. 13.18. Part of the FIX circuitry.



SEC. 13.6 A DIVIDE-AND-CONQUER ADDITION CIRCUIT 721

Delay of the Divide-and-Conquer Adder

Let D(n) be the delay of the n-adder we just designed. We can write a recurrence
relation for D as follows. For the basis, n = 1, examine the basis circuit in Fig.
13.16 and conclude that the delay is 3. Thus, D(1) = 3.

Now examine the inductive construction of the circuit in Fig. 13.17. The delay
of the circuit is the delay of the n-adders plus the delay of the FIX circuitry. The
n-adders have delay D(n). Each of the expressions developed for the FIX circuitry
yields a simple circuit with at most three levels. Figure 13.18 is a typical example.
Thus, D(2n) is three more than D(n). The recurrence relation for D(n) is thus

D(1) =3
D(2n) = D(n) + 3

The solution, for numbers of bits that are powers of 2, begins D(1) = 3, D(2) = 6,
D(4) =9, D(8) = 12, D(16) = 15, D(32) = 18, and so on. The solution to the

recurrence is
D(n) = 3(1 +logyn)

for n a power of 2, as the reader may check using the methods of Section 3.11. In
particular, note that for a 32-bit adder, the delay of 18 is much less than the delay
of 96 for the 32-bit ripple-carry adder.

Number of Gates Used by the Divide-and-Conquer Adder

We should also check that the number of gates is reasonable. Let G(n) be the
number of gates used in an n-adder circuit. The basis is G(1) = 9, as we may see
by counting the gates in the circuit of Fig. 13.16. Then we observe that the circuit
of Fig. 13.17, the inductive case, has 2G(n) gates in the two n-adder subcircuits.
To this amount, we must add the number of gates in the FIX circuitry. As we
may invert ¢ and p® once, each of the n s;’s and ¢;’s can be computed with three
gates each (two AND’s and an OR), or 6n gates total. To this quantity we add the
two inverters for g and p%, and we must add the two gates each that we need to
compute g and p. The total number of gates in the FIX circuitry is thus 6n + 6.
The recurrence for G is hence

G(1)=9

G(2n) =2G(n)+6n+6

Again, our function is defined only when n is a power of 2. The first six values
of G are tabulated in Fig. 13.19. For n = 32, we see that 954 gates are required.
The closed-form expression for G(n) is 3nlog, n + 15n — 6, for n a power of 2, as
the reader may show by applying the techniques of Section 3.11.

Actually, we can do with somewhat fewer gates, if all we want is a 32-bit adder.
For then, we know that there is no carry-in at the right of the 32nd bit, and so the
value of p, and the values of t1,o,. .., t32 need not be computed at the last stage of
the circuit. Similarly, the right-half 16-adder does not need to compute its carry-
propagate bit or its 16 t-values; the right-half 8-adder in the right 16-adder does
not need to compute its p or t's and so on.

It is interesting to compare the number of gates used by the divide-and-conquer
adder with the number of gates used by the ripple-carry adder. The circuit for a
full adder that we designed in Fig. 13.10 uses 12 gates. Thus, an n-bit ripple-carry



722 USING LOGIC TO DESIGN COMPUTER COMPONENTS

186
426
954

W =

[ SRR oINS RN
\]
[o's)

Fig. 13.19. Numbers of gates used by various n-adders.

adder uses 12n gates, and for n = 32, this number is 384 (we can save a few gates
if we remember that the carry into the rightmost bit is 0).

We see that for the interesting case, n = 32, the ripple-carry adder, while
much slower, does use fewer than half as many gates as the divide-and-conquer
adder. Moreover, the latter’s growth rate, O(nlogn), is higher than the growth
rate of the ripple-carry adder, O(n), so that the difference in the number of gates
gets larger as n grows. However, the ratio is only O(logn), so that the difference
in the number of gates used is not severe. As the difference in the time required by
the two classes of circuits is much more significant [O(n) vs. O(log n)], some sort of
divide-and-conquer adder is used in essentially all modern computers.

EXERCISES

13.6.1: Draw the divide-and-conquer circuit, as developed in this section, to add
4-bit numbers.

13.6.2: Design circuits similar to Fig. 13.18 to compute the other outputs of the
adder in Fig. 13.17, that is, p, g, and the s;’s.

13.6.3**: Design a circuit that takes as input a decimal number, with each digit
represented by four inputs that give the binary equivalent of that decimal digit.
The output is the equivalent number represented in binary. You may assume that
the number of digits is a power of 2 and use a divide-and-conquer approach. Hint:
What information does the left half circuit (high-order digits) need from the right
half (low-order digits)?

13.6.4*: Show that the solution to the recurrence equation

D(1)=3
D(2n) = D(n) + 3

is D(n) = 3(1 + logy n) for n a power of 2.

13.6.5*: Show that the solution to the recurrence equation

G(1)=9
G(2n) = 2G(n) +6n+6

is G(n) = 3nlog, n + 15n — 6 for n a power of 2.



0
a=a 13.7

Control and
data inputs

SEC. 13.7 DESIGN OF A MULTIPLEXER 723

13.6.6**: We observed that if all we want is a 32-bit adder, we do not need all 954
gates as was indicated in Fig. 13.19. The reason is that we can assume there is no
carry into the rightmost place of the 32 bits. How many gates do we really need?

Design of a Multiplexer

A multiplezer, often abbreviated MUX, is a common form of computer circuit that
takes d control inputs, say x1, xa, . . ., x4, and 2¢ data inputs, say Yo, Y1, . - -, Yoa_1, aS
shown in Fig. 13.20. The output of the MUX is equal to one particular data input,
the input y(z,45..24),- That is, we treat the control inputs as a binary integer in
the range 0 to 2¢ — 1. This integer is the subscript of the data input that we pass
to the output.

data inputs

Yo Y1 T Yad_g
T] —
To —
control
inputs
Tq —

Y(xrza-2a),

Fig. 13.20. A multiplexer circuit schematic.

Example 13.7. The circuits computing s; and t; in the divide-and-conquer
adder are multiplexers with d = 1. For instance, the formula for s; is s;%g% +¢;“ g%
and its circuit schematic is shown in Fig. 13.21. Here, ¢gf* plays the role of the
control input z1, s;~ is the data input yo, and t;* is the data input y;.

As another example, the formula for the output of a MUX with two control
inputs, 1 and x2, and four data inputs, yg, y1, y2, and ys, is

YoxX1T2 + Y1122 + Y2X1T2 + Y3T1T2



724 USING LOGIC TO DESIGN COMPUTER COMPONENTS

si = sitght+t;lg"
Fig. 13.21. A 1-multiplexer.

Notice that there is one term for each data input. The term with data input y; also
has each of the control inputs, either negated or unnegated. We can tell which are
negated by writing ¢ as a d-bit binary integer. If the jth position of 4 in binary has
0, then z; is negated, and if the jth position has 1, we do not negate z;. Note that
this rule works for any number d of control inputs. 0

The straightforward design for a multiplexer is a circuit with three levels of
gates. At the first level, we compute the negations of the control bits. The next
level is a row of AND-gates. The ith gate combines the data input y; with the
appropriate combination of control inputs and negated control inputs. Thus, the
output of the ith gate is always 0 unless the control bits are set to the binary
representation of ¢, in which case the output is equal to y;. The final level is an
OR-gate with inputs from each of the AND-gates. As all the AND-gates but one have
output 0, the remaining gate, say the ith, which has output y;, makes the output
of the circuit equal to whatever y; is. An example of this circuit for d = 2 is shown
in Fig. 13.22.

A Divide-and-Conquer Multiplexer

The circuit of Fig. 13.22 has maximum fan-in 4, which is generally acceptable.
However, as d gets larger, the fan-in of the OR-gate, which is 2%, grows unaccept-
ably. Even the AND-gates, with d + 1 inputs each, begin to have uncomfortably
large fan-in. Fortunately, there is a divide-and-conquer approach based on splitting
the control bits in half, that allows us to build the circuit with gates of fan-in at
most 2. Moreover, this circuit uses many fewer gates and is almost as fast as the
generalization of Fig. 13.22, provided we require that all circuits be built of gates
with the same limit on fan-in.

An inductive construction of a family of multiplexer circuits follows: We call
the circuit for a multiplexer with d-control-inputs and 2%-data-inputs a d-MUX.

BASIS. The basis is a multiplexer circuit for d = 1, that is, a 1-MUX, which we
show in Fig. 13.23. It consists of four gates, and the fan-in is limited to 2.

INDUCTION. The induction is performed by the circuit in Fig. 13.24, which con-
structs a 2d-MUX from 2% 4 1 copies of d-MUX’s. Notice that while we double the
number of control inputs, we square the number of data inputs, since 22¢ = (2%)2.



SEC. 13.7 DESIGN OF A MULTIPLEXER 725

Yo Y1 Y2 Y3

rp —

To—9

Fig. 13.22. Multiplexer circuit for d = 2.

Suppose that the control inputs to the 2d-MUX call for data input y;; that is,
i = (2102 - T2q)2

Each d-MUX in the top row of Fig. 13.24 takes a group of 2¢ data inputs, starting
with some y;, where j is a multiple of 2¢. Thus, if we use the low-order d control
bits, 441,...,T24, to control each of these d-MUX’s, the selected input is the kth
from each group (counting the leftmost in each group as input 0), where

k= ($d+1 e xzd)z

That is, k is the integer represented by the low-order half of the bits.
The data inputs to the bottom d-MUX are the outputs of the top row of
d-MUX’s, which we just discovered are yg,YoaipsYax2dyks---»Y2d—1)2d4%- Lhe



726 USING LOGIC TO DESIGN COMPUTER COMPONENTS

Yo Y1

rp —

Fig. 13.23. Basis circuit, the multiplexer for d = 1.

Yo---Y2d 1 Yod---Yax2d 1 Y(2d—1)2d---Y22d 1
Y Y Y

Td+1 Ld+1 Ld+1
s —m d-MUX oo —m d-MUX s —m d-MUX
T2d T2d L2d

Tl

—»t d-MUX
T4

|

y(zlmg---a:gd)2

Fig. 13.24. Divide-and-conquer multiplexer.



SEC. 13.7 DESIGN OF A MULTIPLEXER 727

bottom d-MUX is controlled by x; - - - x4, which represents some integer j in binary;
that is, j = (21 ---z4)2. The bottom MUX thus selects as its output the jth of its
inputs (counting the leftmost as input 0). The selected output is thus y;joa .

We can show that j2¢ + k = i as follows. Notice that multiplying j by 2¢
has the effect of shifting the binary representation of j left by d places. That is,
j2¢ = (21 ---140---0)2, where the string of 0’s shown is of length d. Thus, the
binary representation of j2d + ks (21 T4%as1 - x24)2- That follows because
the binary representation of k is (X441 - - - Z24)2, and there is evidently no carry out
of the dth place from the right, when this number is added to the number ;2¢,
which ends in d 0’s. We now see that j2¢ + k = i, because they have the same
binary representations. Thus, the 2d-MUX of Fig. 13.24 correctly selects y;, where
i=(x1T2q)2-

Delay of the Divide-and-Conquer MUX

We can calculate the delay of the multiplexer circuit we designed by writing the
appropriate recurrence. Let D(d) be the delay of a d-MUX. Inspection of Fig. 13.23
tells us that for d = 1, the delay is 3. However, to get a tighter bound, we shall
assume that all control inputs are passed through inverters outside the MUX, and
not count the level for inverters in Fig. 13.23. We shall then add 1 to the total delay,
to account for inversion of all the control inputs, after we determine the delay of
the rest of the circuit. Thus, we shall start our recurrence with D(1) = 2.

For the induction, we note that the delay through the circuit of Fig. 13.24 is the
sum of the delays through any one of the MUX’s in the upper row, and the delay
through the final MUX. Thus, D(2d) is twice D(d), and we have the recurrence

D(1) =2
D(2d) = 2D(d)

The solution is easy to find. We have D(2) = 4, D(4) = 8, D(8) = 16, and in
general, D(d) = 2d. Of course, technically this formula only holds when d is a
power of 2, but the same idea can be used for an arbitrary number of control bits d.
Since we must add 1 to the delay for the inversion of the control inputs, the total
delay of the circuit is 2d + 1.

Now consider the simple multiplexer circuit (an AND for each data input, all
feeding one OR-gate). As stated, its delay is 3, independent of d, but we cannot
generally build it because the fan-in of the final OR-gate is unrealistic. What happens
if we insist on limiting the fan-in to 2? Then the OR-gate, with 2% inputs, is replaced
by a complete binary tree with d levels. Recall that such a tree will have 27 leaves,
exactly the right number. The delay of this tree is d.

We also have to replace the AND-gates with trees of fan-in 2 gates, since in
general the AND-gates have d + 1 inputs. Recall that when using gates with two
inputs, each use of a gate reduces the number of inputs by 1, so that it takes d
gates of fan-in 2 to reduce d + 1 inputs to one output. If we arrange the gates as a
balanced binary tree of AND-gates, we need [log, d+17 levels. When we add one more
level for inverting the control inputs, we have a total delay of d + 1+ [log,(d+1)].
This figure compares favorably with the delay 2d + 1 for the divide-and-conquer
MUX, although the difference is not great, as shown in the table of Fig. 13.25.



728 USING LOGIC TO DESIGN COMPUTER COMPONENTS

DELAY

d | Divide-and-conquer | Simple

MUX MUX
1 3 3
2 5 5
4 9 8
8 17 13
16 33 22

Fig. 13.25. Delay of multiplexer designs.

Gate Count

In this section we compare the number of gates between the simple MUX and
the divide-and-conquer MUX. We shall see that the divide-and-conquer MUX has
strikingly fewer gates as d increases.

To count the number of gates in the divide-and-conquer MUX, we can tem-
porarily ignore the inverters. We know that each of the d control inputs is inverted
once, so that we can just add d to the count at the end. Let G(d) be the number of
gates (excluding inverters) used in the d-MUX. Then we can develop a recurrence
for G as follows:

BASIS. For the basis case, d = 1, there are three gates in the circuit of Fig. 13.23,
excluding the inverter. Thus, G(1) = 3.

INDUCTION. For the induction, the 2d-MUX in Fig. 13.24 is built entirely from
29 +1 d-MUX’s.

Thus, the recurrence relation is
G(1)=3
G(2d) = (2% + 1)G(d)
As we saw in Section 3.11, the solution to this recurrence is
G(d) = 3(2¢ - 1)
The first few values of the recurrence are G(2) =9, G(4) = 45, and G(8) = 765.

Now consider the number of gates used in the simple MUX, converted to use
only gates of fan-in 2. As before, we shall ignore the d inverters needed for the
control inputs. The final OR-gate is replaced by a tree of 2¢ — 1 OR-gates. Each
of the 2¢ AND-gates is replaced by a tree of d AND-gates. Thus, the total number
of gates is 2%(d + 1) — 1. This function is greater than the number of gates for
the divide-and-conquer MUX, approximately by the ratio (d + 1)/3. Figure 13.26
compares the gate counts (excluding the d inverters in each case) for the two kinds
of MUX.



One-hot
decoder

SEC. 13.7 DESIGN OF A MULTIPLEXER 729

GATE COUNT

d | Divide-and-conquer | Simple
MUX MUX
1 3 3
2 9 11
4 45 79
8 765 2303
16 196,605 1,114,111

Fig. 13.26. Gate count for multiplexer designs (excludes inverters).

More About Divide-and-Conquer

The style of divide-and-conquer algorithm represented by our multiplexer design is
a rare, but powerful, form. Most examples of divide-and-conquer split a problem
into two parts. Examples are merge sort, the fast adder developed in Section 13.6,
and the complete binary tree used to compute the AND or OR of a large number of
bits. In the multiplexer, we build a 2d-MUX from d + 1 smaller MUXs.

EXERCISES

13.7.1: Using the divide-and-conquer technique of this section, construct a

a) 2-MUX
b) 3-MUX

13.7.2*: How would you construct a multiplexer for which the number of data
inputs is not a power of two?

13.7.3*: Use the divide-and-conquer technique to design a one-hot-decoder. This
circuit takes d inputs, x1,Za, ..., 24 and has 2% outputs yo,y1,...,ysd_;. Exactly
one of the outputs will be 1, specifically that y; such that i = (z1,22,...,24)2-
What is the delay of your circuit as a function of d? How many gates does it use as
a function of d? Hint: There are several approaches. One is to design the circuit
for d by taking a one-hot-decoder for the first d — 1 inputs and splitting each output
of that decoder into two outputs based on the last input, x4. A second is to assume
d is a power of 2 and start with two one-hot-decoders, one for the first d/2 inputs
and the other for the last d/2 inputs. Then combine the outputs of these decoders
appropriately.

13.7.4*: How does your circuit for Exercise 13.7.3 compare, in delay and number
of gates, with the obvious one-hot-decoder formed by creating one AND-gate for each
output and feeding to that gate the appropriate inputs and inverted inputs? How
does the circuit of Exercise 13.7.3 compare with your circuit of this exercise if you
replace AND-gates with large fan-in by trees of 2-input gates?



Majority circuit

0
a=a 13.8

730 USING LOGIC TO DESIGN COMPUTER COMPONENTS

13.7.5%: A majority circuit takes 2d — 1 inputs and has a single output. Its output
is 1 if d or more of the inputs are 1. Design a divide-and-conquer majority circuit.
What are its delay and gate count as a function of d? Hint: Like the adder of
Section 13.6, this problem is best solved by a circuit that computes more than we
need. In particular, we can design a circuit that takes n inputs and has n + 1
outputs, ¥o,y1,-- -, Yn. Output y; is 1 if exactly ¢ of the inputs are 1. We can then
construct the majority circuit inductively by either of the two approaches suggested
in Exercise 13.7.3.

13.7.6*: There is a naive majority circuit that is constructed by having one AND
gate for every set of d inputs. The output of the majority circuit is the OR of all
these AND-gates. How do the delay and gate count of the naive circuit compare with
that of the divide-and-conquer circuit of Exercise 13.7.57 What if the gates of the
naive circuit are replaced by 2-input gates?

Memory Elements

Before leaving the topic of logic circuits, let us consider a very important type
of circuit that is sequential rather than combinational. A memory element is a
collection of gates that can remember its last input and produce that input at its
output, no matter how long ago that input was given. The main memory of the
computer consists of bits that can be stored into and that will hold their value until
another value is stored.

load a

——— out

m

Fig. 13.27. A memory element.

Figure 13.27 is a simple memory element. It is controlled by an input called
load. Ordinarily, load has value 0. In that case, the output of inverter a is 1. Since
an AND-gate has output O whenever one or more of its inputs is 0, the output of
AND-gate ¢ must be 0 whenever load is 0.

If load = 0 and the output of gate d (which is also the circuit output) is 1,
then both inputs to gate b are 1, and so its output is 1. Thus, one of the inputs to
OR-gate d is 1, and so its output remains 1. On the other hand, suppose the output
of d is 0. Then an input to AND-gate b is 0, which means that its output is 0. That
makes both inputs to d be 0, and so the output remains 0 as long as load = 0. We
conclude that while load = 0, the circuit output remains what it was.



0
= 13.9

SEC. 13.9 SUMMARY OF CHAPTER 13 731

Real Memory Chips

We should not imagine that Fig. 13.27 represents precisely a typical register bit,
but it is not too deceptive. While it also represents a bit of main memory, at least
in principle, there are significant differences, and many of the issues in the design
of a memory chip involve electronics at a level of detail well beyond the scope of
the book.

Because memory chips are used in such great quantities, both in computers and
other kinds of hardware, their large-scale production has made feasible some subtle
designs for chips storing a million bits or more. To get an idea of the compactness
of a memory chip, recall its area is about a square centimeter (10~* square meter).
If there are 16 million bits on the chip, then each bit occupies an area equal to
6 x 10712 square meters, or an area about 2.5 microns on a side (remember, a
micron is 107% meter). If the minimum width of a wire, or the space between wires,
is 0.3 micron, that doesn’t leave much room for circuitry to build a memory element.
To make matters worse, we need not only to store bits, but also to select one of the
16 million bits to receive a value or one of the 16 million to have its value read. The
selection circuitry takes up a significant fraction of the space on the chip, leaving
even less space for the memory element itself.

Now consider what happens when load = 1. The output of inverter a is now
0, so that the output of AND-gate b will be 0 as well. On the other hand, the first
input to AND-gate c is 1, so that the output of ¢ will be whatever the input in is.
Likewise, as the first input to OR-gate d is 0, the output of d will be the same as the
output of ¢, which in turn is the same as circuit input in. Thus, setting load to 1
causes the circuit output to become whatever in is. When we change load back to
0, that circuit output continues to circulate between gates b and d, as discussed.

We conclude that the circuit of Fig. 13.27 behaves like a memory element, if
we interpret “circuit input” as meaning whatever value in has at a time when load
is 1. If load is zero, then we say there is no circuit input, regardless of the value of
in. By setting load to 1, we can cause the memory element to accept a new value.
The element will hold that value as long as load is 0, that is, as long as there is no
new circuit input.

EXERCISES

13.8.1: Draw a timing diagram similar to that in Fig. 13.6 for the memory-element
circuit shown in Fig. 13.27.

13.8.2: Describe what happens to the behavior of the memory element shown in
Fig. 13.27 if an alpha particle hits the inverter and for a short time (but enough
time for signals to propagate around the circuit) causes the output of gate a to be
the same as its input.

Summary of Chapter 13

After reading this chapter, the reader should have more familiarity with the circuitry



0
00 13.10

732 USING LOGIC TO DESIGN COMPUTER COMPONENTS

in a computer and how logic can be used to help design this circuitry. In particular,
the following points were covered:

0 What gates are and how they are combined to form circuits
O The difference between a combinational circuit and a sequential circuit

0 How combinational circuits can be designed from logical expressions, and how
logical expressions can be used to model combinational circuits

0 How algorithm-design techniques such as divide-and-conquer can be used to
design circuits such as adders and multiplexers

Some of the factors that go into the design of fast circuits

An indication of how a computer stores bits in its electronic circuitry

Bibliographic Notes for Chapter 13

Shannon [1938] was the first to observe that Boolean algebra can be used to describe
the behavior of combinational circuits. For a more comprehensive treatment on the
theory and design of combinational circuits, see Friedman and Menon [1975].

Mead and Conway [1980] describe techniques used to construct very large scale
integrated circuits. Hennessy and Patterson [1990] discuss computer architecture
and the techniques for organizing its circuit elements.

Friedman, A. D., and P. R. Menon [1975]. Theory and Design of Switching Circuits,
Computer Science Press, New York.

Hennessy, J. L., and D. A. Patterson [1990]. Computer Architecture: A Quantita-
tive Approach, Morgan Kaufmann, San Mateo, Calif.

Mead, C., and L. Conway [1980]. Introduction to VLSI Systems, Addison-Wesley,
Reading, Mass.

Shannon, C. E. [1938]. “Symbolic analysis of relay and switching circuits,” Trans.
of AIEE 57, pp. 713-723.



