
CHAPTER 5

The Tree

Data Model

There are many situations in which information has a hierarchical or nested struc-
ture like that found in family trees or organization charts. The abstraction that
models hierarchical structure is called a tree and this data model is among the most
fundamental in computer science. It is the model that underlies several program-
ming languages, including Lisp.

Trees of various types appear in many of the chapters of this book. For in-
stance, in Section 1.3 we saw how directories and files in some computer systems
are organized into a tree structure. In Section 2.8 we used trees to show how lists
are split recursively and then recombined in the merge sort algorithm. In Section
3.7 we used trees to illustrate how simple statements in a program can be combined
to form progressively more complex statements.

5.1 What This Chapter Is About

The following themes form the major topics of this chapter:

The terms and concepts related to trees (Section 5.2).

The basic data structures used to represent trees in programs (Section 5.3).

Recursive algorithms that operate on the nodes of a tree (Section 5.4).

A method for making inductive proofs about trees, called structural induction,
where we proceed from small trees to progressively larger ones (Section 5.5).

The binary tree, which is a variant of a tree in which nodes have two “slots”
for children (Section 5.6).

The binary search tree, a data structure for maintaining a set of elements from
which insertions and deletions are made (Sections 5.7 and 5.8).

223

224 THE TREE DATA MODEL

The priority queue, which is a set to which elements can be added, but from
which only the maximum element can be deleted at any one time. An efficient
data structure, called a partially ordered tree, is introduced for implementing
priority queues, and an O(n logn) algorithm, called heapsort, for sorting n
elements is derived using a balanced partially ordered tree data structure, called
a heap (Sections 5.9 and 5.10).

5.2 Basic Terminology

Trees are sets of points, called nodes, and lines, called edges. An edge connects twoNodes and

edges distinct nodes. To be a tree, a collection of nodes and edges must satisfy certain
properties; Fig. 5.1 is an example of a tree.

1. In a tree, one node is distinguished and called the root. The root of a tree isRoot

generally drawn at the top. In Fig. 5.1, the root is n1.

2. Every node c other than the root is connected by an edge to some one other
node p called the parent of c. We also call c a child of p. We draw the parentParent and

child of a node above that node. For example, in Fig. 5.1, n1 is the parent of n2, n3,
and n4, while n2 is the parent of n5 and n6. Said another way, n2, n3, and n4

are children of n1, while n5 and n6 are children of n2.

3. A tree is connected in the sense that if we start at any node n other than theAll nodes are

connected to

the root

root, move to the parent of n, to the parent of the parent of n, and so on, we
eventually reach the root of the tree. For instance, starting at n7, we move to
its parent, n4, and from there to n4’s parent, which is the root, n1.

n1

n2 n3 n4

n5 n6 n7

Fig. 5.1. Tree with seven nodes.

An Equivalent Recursive Definition of Trees

It is also possible to define trees recursively with an inductive definition that con-
structs larger trees out of smaller ones.

BASIS. A single node n is a tree. We say that n is the root of this one-node tree.

INDUCTION. Let r be a new node and let T1, T2, . . . , Tk be one or more trees with
roots c1, c2, . . . , ck, respectively. We require that no node appear more than once in
the Ti’s; and of course r, being a “new” node, cannot appear in any of these trees.
We form a new tree T from r and T1, T2, . . . , Tk as follows:

a) Make r the root of tree T .

SEC. 5.2 BASIC TERMINOLOGY 225

b) Add an edge from r to each of c1, c2, . . . , ck, thereby making each of these
nodes a child of the root r. Another way to view this step is that we have
made r the parent of each of the roots of the trees T1, T2, . . . , Tk.

Example 5.1. We can use this recursive definition to construct the tree in Fig.
5.1. This construction also verifies that the structure in Fig. 5.1 is a tree. The nodes
n5 and n6 are each trees themselves by the basis rule, which says that a single node
can be considered a tree. Then we can apply the inductive rule to create a new
tree with n2 as the root r, and the tree T1, consisting of n5 alone, and the tree T2,
consisting of n6 alone, as children of this new root. The nodes c1 and c2 are n5 and
n6, respectively, since these are the roots of the trees T1 and T2. As a result, we
can conclude that the structure

n2

n5 n6

is a tree; its root is n2.
Similarly, n7 alone is a tree by the basis, and by the inductive rule, the structure

n4

n7

is a tree; its root is n4.
Node n3 by itself is a tree. Finally, if we take the node n1 as r, and n2, n3, and

n4 as the roots of the three trees just mentioned, we create the structure in Fig.
5.1, verifying that it indeed is a tree.

Paths, Ancestors, and Descendants

The parent-child relationship can be extended naturally to ancestors and descen-
dants. Informally, the ancestors of a node are found by following the unique path
from the node to its parent, to its parent’s parent, and so on. Strictly speaking,
a node is also its own ancestor. The descendant relationship is the inverse of the
ancestor relationship, just as the parent and child relationships are inverses of each
other. That is, node d is a descendant of node a if and only if a is an ancestor of d.

More formally, suppose m1,m2, . . . ,mk is a sequence of nodes in a tree such
that m1 is the parent of m2, which is the parent of m3, and so on, down to mk−1,
which is the parent of mk. Then m1,m2, . . . ,mk is called a path from m1 to mk in
the tree. The length of the path is k− 1, one less than the number of nodes on thePath length

path. Note that a path may consist of a single node (if k = 1), in which case the
length of the path is 0.

Example 5.2. In Fig. 5.1, n1, n2, n6 is a path of length 2 from the root n1 to
the node n6; n1 is a path of length zero from n1 to itself.

226 THE TREE DATA MODEL

If m1,m2, . . . ,mk is a path in a tree, node m1 is called an ancestor of mk and
node mk a descendant of m1. If the path is of length 1 or more, then m1 is called a
proper ancestor of mk and mk a proper descendant of m1. Again, remember thatProper ancestor

and descendant the case of a path of length 0 is possible, in which case the path lets us conclude
that m1 is an ancestor of itself and a descendant of itself, although not a proper
ancestor or descendant. The root is an ancestor of every node in a tree and every
node is a descendant of the root.

Example 5.3. In Fig. 5.1, all seven nodes are descendants of n1, and n1 is an
ancestor of all nodes. Also, all nodes but n1 itself are proper descendants of n1,
and n1 is a proper ancestor of all nodes in the tree but itself. The ancestors of n5

are n5, n2, and n1. The descendants of n4 are n4 and n7.

Nodes that have the same parent are sometimes called siblings. For example,Sibling

in Fig. 5.1, nodes n2, n3, and n4 are siblings, and n5 and n6 are siblings.

Subtrees

In a tree T , a node n, together with all of its proper descendants, if any, is called
a subtree of T . Node n is the root of this subtree. Notice that a subtree satisfies
the three conditions for being a tree: it has a root, all other nodes in the subtree
have a unique parent in the subtree, and by following parents from any node in the
subtree, we eventually reach the root of the subtree.

Example 5.4. Referring again to Fig. 5.1, node n3 by itself is a subtree, since
n3 has no descendants other than itself. As another example, nodes n2, n5, and n6

form a subtree, with root n2, since these nodes are exactly the descendants of n2.
However, the two nodes n2 and n6 by themselves do not form a subtree without
node n5. Finally, the entire tree of Fig. 5.1 is a subtree of itself, with root n1.

Leaves and Interior Nodes

A leaf is a node of a tree that has no children. An interior node is a node that
has one or more children. Thus, every node of a tree is either a leaf or an interior
node, but not both. The root of a tree is normally an interior node, but if the tree
consists of only one node, then that node is both the root and a leaf.

Example 5.5. In Fig. 5.1, the leaves are n5, n6, n3, and n7. The nodes n1, n2,
and n4 are interior.

Height and Depth

In a tree, the height of a node n is the length of a longest path from n to a leaf.
The height of the tree is the height of the root. The depth, or level, of a node n isLevel

the length of the path from the root to n.

SEC. 5.2 BASIC TERMINOLOGY 227

Example 5.6. In Fig. 5.1, node n1 has height 2, n2 has height 1, and leaf n3

has height 0. In fact, any leaf has height 0. The tree in Fig. 5.1 has height 2. The
depth of n1 is 0, the depth of n2 is 1, and the depth of n5 is 2.

Ordered Trees

Optionally, we can assign a left-to-right order to the children of any node. For
example, the order of the children of n1 in Fig. 5.1 is n2 leftmost, then n3, then n4.
This left-to-right ordering can be extended to order all the nodes in a tree. If m
and n are siblings and m is to the left of n, then all of m’s descendants are to the
left of all of n’s descendants.

Example 5.7. In Fig. 5.1, the nodes of the subtree rooted at n2 — that is, n2,
n5, and n6 — are all to the left of the nodes of the subtrees rooted at n3 and n4.
Thus, n2, n5, and n6 are all to the left of n3, n4, and n7.

In a tree, take any two nodes x and y neither of which is an ancestor of the
other. As a consequence of the definition of “to the left,” one of x and y will be
to the left of the other. To tell which, follow the paths from x and y toward the
root. At some point, perhaps at the root, perhaps lower, the paths will meet at
some node z as suggested by Fig. 5.2. The paths from x and y reach z from two
different nodes m and n, respectively; it is possible that m = x and/or n = y, but
it must be that m 6= n, or else the paths would have converged somewhere below z.

r

z

m n

x y

Fig. 5.2. Node x is to the left of node y.

Suppose m is to the left of n. Then since x is in the subtree rooted at m and
y is in the subtree rooted at n, it follows that x is to the left of y. Similarly, if m
were to the right of n, then x would be to the right of y.

Example 5.8. Since no leaf can be an ancestor of another leaf, it follows that
all leaves can be ordered “from the left.” For instance, the order of the leaves in
Fig. 5.1 is n5, n6, n3, n7.

228 THE TREE DATA MODEL

Labeled Trees

A labeled tree is a tree in which a label or value is associated with each node of the
tree. We can think of the label as the information associated with a given node.
The label can be something as simple, such as a single integer, or complex, such as
the text of an entire document. We can change the label of a node, but we cannot
change the name of a node.

If the name of a node is not important, we can represent a node by its label.
However, the label does not always provide a unique name for a node, since several
nodes may have the same label. Thus, many times we shall draw a node with both
its label and its name. The following paragraphs illustrate the concept of a labeled
tree and offer some samples.

Expression Trees — An Important Class of Trees

Arithmetic expressions are representable by labeled trees, and it is often quite help-
ful to visualize expressions as trees. In fact, expression trees, as they are sometimes
called, specify the association of an expression’s operands and its operators in a
uniform way, regardless of whether the association is required by the placement of
parentheses in the expression or by the precedence and associativity rules for the
operators involved.

Let us recall the discussion of expressions in Section 2.6, especially Example
2.17, where we gave a recursive definition of expressions involving the usual arith-
metic operators. By analogy with the recursive definition of expressions, we can
recursively define the corresponding labeled tree. The general idea is that each
time we form a larger expression by applying an operator to smaller expressions,
we create a new node, labeled by that operator. The new node becomes the root of
the tree for the large expression, and its children are the roots of the trees for the
smaller expressions.

For instance, we can define the labeled trees for arithmetic expressions with
the binary operators +, −, ×, and /, and the unary operator −, as follows.

BASIS. A single atomic operand (e.g., a variable, an integer, or a real, as in Section
2.6) is an expression, and its tree is a single node, labeled by that operand.

+

T1 T2

−

T1

(a) (E1 + E2) (b) (−E1)

Fig. 5.3. Expression trees for (E1 + E2) and (−E1).

SEC. 5.2 BASIC TERMINOLOGY 229

INDUCTION. If E1 and E2 are expressions represented by trees T1 and T2, re-
spectively, then the expression (E1 + E2) is represented by the tree of Fig. 5.3(a),
whose root is labeled +. This root has two children, which are the roots of T1 and
T2, respectively, in that order. Similarly, the expressions (E1 − E2), (E1 × E2),
and (E1/E2) have expression trees with roots labeled −, ×, and /, respectively,
and subtrees T1 and T2. Finally, we may apply the unary minus operator to one
expression, E1. We introduce a root labeled −, and its one child is the root of T1;
the tree for (−E1) is shown in Fig. 5.3(b).

Example 5.9. In Example 2.17 we discussed the recursive construction of a
sequence of six expressions from the basis and inductive rules. These expressions,
listed in Fig. 2.16, were

i) x iv)
(

−(x+ 10)
)

ii) 10 v) y

iii) (x+ 10) vi)
(

y ×
(

−(x+ 10)
)

)

Expressions (i), (ii), and (v) are single operands, and so the basis rule tells us that
the trees of Fig. 5.4(a), (b), and (e), respectively, represent these expressions. Note
that each of these trees consists of a single node to which we have given a name —
n1, n2, and n5, respectively — and a label, which is the operand in the circle.

x n1

(a) For x.

10 n2

(b) For 10.

+ n3

x n1 10 n2

(c) For (x+ 10).

− n4

+ n3

x n1 10 n2

(d) For (−(x+ 10)).

y n5

(e) For y.

× n6

y n5 − n4

+ n3

x n1 10 n2

(f) For (y × (−(x+ 10))).

Fig. 5.4. Construction of expression trees.

Expression (iii) is formed by applying the operator + to the operands x and
10, and so we see in Fig. 5.4(c) the tree for this expression, with root labeled +,
and the roots of the trees in Fig. 5.4(a) and (b) as its children. Expression (iv) is

230 THE TREE DATA MODEL

formed by applying unary − to expression (iii), so that the tree for
(

−(x + 10)
)

,
shown in Fig. 5.4(d), has root labeled − above the tree for (x + 10). Finally, the

tree for the expression
(

y ×
(

−(x+ 10)
)

)

, shown in Fig. 5.4(f), has a root labeled

×, whose children are the roots of the trees of Fig. 5.4(e) and (d), in that order.

1

2 3

4 5 6 7

8 9 10 11 12

13 14

15

Fig. 5.5. Tree for Exercise 5.2.1.

EXERCISES

5.2.1: In Fig. 5.5 we see a tree. Tell what is described by each of the following
phrases:

a) The root of the tree

b) The leaves of the tree

c) The interior nodes of the tree

d) The siblings of node 6

e) The subtree with root 5

f) The ancestors of node 10

g) The descendants of node 10

h) The nodes to the left of node 10

i) The nodes to the right of node 10

j) The longest path in the tree

k) The height of node 3

l) The depth of node 13

m) The height of the tree

5.2.2: Can a leaf in a tree ever have any (a) descendants? (b) proper descendants?

5.2.3: Prove that in a tree no leaf can be an ancestor of another leaf.

SEC. 5.3 DATA STRUCTURES FOR TREES 231

5.2.4*: Prove that the two definitions of trees in this section are equivalent. Hint :
To show that a tree according the nonrecursive definition is a tree according the
recursive definition, use induction on the number of nodes in the tree. In the
opposite direction, use induction on the number of rounds used in the recursive
definition.

5.2.5: Suppose we have a graph consisting of four nodes, r, a, b, and c. Node r is
an isolated node and has no edges connecting it. The remaining three nodes form
a cycle; that is, we have an edge connecting a and b, an edge connecting b and c,
and an edge connecting c and a. Why is this graph not a tree?

5.2.6: In many kinds of trees, there is a significant distinction between the interior
nodes and the leaves (or rather the labels of these two kinds of nodes). For example,
in an expression tree, the interior nodes represent operators, and the leaves represent
atomic operands. Give the distinction between interior nodes and leaves for each of
the following kinds of trees:

a) Trees representing directory structures, as in Section 1.3

b) Trees representing the splitting and merging of lists for merge sort, as in Section
2.8

c) Trees representing the structure of a function, as in Section 3.7

5.2.7: Give expression trees for the following expressions. Note that, as is cus-
tomary with expressions, we have omitted redundant parentheses. You must first
restore the proper pairs of parentheses, using the customary rules for precedence
and associativity of operators.

a) (x+ 1)× (x− y + 4)

b) 1 + 2 + 3 + 4 + 5 + 6

c) 9× 8 + 7× 6 + 5

5.2.8: Show that if x and y are two distinct nodes in an ordered tree, then exactly
one of the following conditions must hold:

a) x is a proper ancestor of y

b) x is a proper descendant of y

c) x is to the left of y

d) x is to the right of y

5.3 Data Structures for Trees

Many data structures can be used to represent trees. Which one we should use
depends on the particular operations we want to perform. As a simple example, if
all we ever want to do is to locate the parents of nodes, then we can represent each
node by a structure consisting of a label plus a pointer to the structure representing
the parent of that node.

As a general rule, the nodes of a tree can be represented by structures in which
the fields link the nodes together in a manner similar to the way in which the nodes
are connected in the abstract tree; the tree itself can be represented by a pointer to
the root’s structure. Thus, when we talk about representing trees, we are primarily
interested in how the nodes are represented.

232 THE TREE DATA MODEL

One distinction in representations concerns where the structures for the nodes
“live” in the memory of the computer. In C, we can create the space for struc-
tures for nodes by using the function malloc from the standard library stdlib.h,
in which case nodes “float” in memory and are accessible only through pointers.
Alternatively, we can create an array of structures and use elements of the array to
represent nodes. Again nodes can be linked according to their position in the tree,
but it is also possible to visit nodes by walking down the array. We can thus access
nodes without following a path through the tree. The disadvantage of an array-
based representation is that we cannot create more nodes than there are elements
in the array. In what follows, we shall assume that nodes are created by malloc,
although in situations where there is a limit on how large trees can grow, an array
of structures of the same type is a viable, and possibly preferred, alternative.

Array-of-Pointers Representation of Trees

One of the simplest ways of representing a tree is to use for each node a structure
consisting of a field or fields for the label of the node, followed by an array of pointers
to the children of that node. Such a structure is suggested by Fig. 5.6. The constant
bf is the size of the array of pointers. It represents the maximum number of children
a node can have, a quantity known as the branching factor. The ith component ofBranching

factor the array at a node contains a pointer to the ith child of that node. A missing child
can be represented by a NULL pointer.

info

p0 p1 · · · pbf−1

Fig. 5.6. Node represented by an array of pointers.

In C this data structure can be represented by the type declaration

typedef struct NODE *pNODE;

struct NODE {

int info;

pNODE children[BF];

};

Here, the field info represents the information that constitutes the label of a node
and BF is the constant defined to be the branching factor. We shall see many
variants of this declaration throughout this chapter.

In this and most other data structures for trees, we represent a tree by a pointer
to the root node. Thus, pNODE also serves as the type of a tree. We could, in fact,
use the type TREE in place of pNODE, and we shall adopt that convention when we
talk about binary trees starting in Section 5.6. However, for the moment, we shall
use the name pNODE for the type “pointer to node,” since in some data structures,
pointers to nodes are used for other purposes besides representing trees.

The array-of-pointers representation allows us to access the ith child of any
node in O(1) time. This representation, however, is very wasteful of space when
only a few nodes in the tree have many children. In this case, most of the pointers
in the arrays will be NULL.

SEC. 5.3 DATA STRUCTURES FOR TREES 233

Try to Remember Trie

The term “trie” comes from the middle of the word “retrieval.” It was originally
intended to be pronounced “tree.” Fortunately, common parlance has switched to
the distinguishing pronunciation “try.”

Example 5.10. A tree can be used to represent a collection of words in a way
that makes it quite efficient to check whether a given sequence of characters is a
valid word. In this type of tree, called a trie, each node except the root has anTrie

associated letter. The string of characters represented by a node n is the sequence
of letters along the path from the root to n. Given a set of words, the trie consists
of nodes for exactly those strings of characters that are prefixes of some word in
the set. The label of a node consists of the letter represented by the node and
also a Boolean telling whether or not the string from the root to that node forms a
complete word; we shall use for the Boolean the integer 1 if so and 0 if not.1

For instance, suppose our “dictionary” consists of the four words he, hers, his,
she. A trie for these words is shown in Fig. 5.7. To determine whether the word he

is in the set, we start at the root n1, move to the child n2 labeled h, and then from
that node move to its child n4 labeled e. Since these nodes all exist in the tree, and
n4 has 1 as part of its label, we conclude that he is in the set.

0 n1

h 0 n2 s 0 n3

e 1 n4 i 0 n5 h 0 n6

r 0 n7 s 1 n8 e 1 n9

s 1 n10

Fig. 5.7. Trie for words he, hers, his, and she.

As another example, suppose we want to determine whether him is in the set.
We follow the path from the root to n2 to n5, which represents the prefix hi; but
at n5 we find no child corresponding to the letter m. We conclude that him is not
in the set. Finally, if we search for the word her, we find our way from the root to
node n7. That node exists but does not have a 1. We therefore conclude that her
is not in the set, although it is a proper prefix of a word, hers, in the set.

Nodes in a trie have a branching factor equal to the number of different char-
acters in the alphabet from which the words are formed. For example, if we do not

1 In the previous section we acted as if the label was a single value. However, values can be
of any type, and labels can be structures consisting of two or more fields. In this case, the
label has one field that is a letter and a second that is an integer that is either 0 or 1.

234 THE TREE DATA MODEL

distinguish between upper- and lower-case, and words contain no special characters
such as apostrophes, then we can take the branching factor to be 26. The type of
a node, including the two label fields, can be defined as in Fig. 5.8. In the array
children, we assume that the letter a is represented by index 0, the letter b by
index 1, and so on.

typedef struct NODE *pNODE;

struct NODE {

char letter;

int isWord;

pNODE children[BF];

};

Fig. 5.8. Definition of an alphabetic trie.

The abstract trie of Fig. 5.7 can be represented by the data structure of Fig.
5.9. We represent nodes by showing the first two fields, letter and isWord, along
with those elements of the array children that have non-NULL pointers. In the
children array, for each non-NULL element, the letter indexing the array is shown
in the entry above the pointer to the child, but that letter is not actually present
in the structure. Note that the letter field of the root is irrelevant.

0

· · · h · · · s · · ·

h 0

· · · e · · · i · · ·
s 0

· · · h · · ·

e 1

· · · r · · ·
i 0

· · · s · · ·
h 0

· · · e · · ·

r 0

· · · s · · ·
s 1

· · ·
e 1

· · ·

s 1

· · ·

Fig. 5.9. Data structure for the trie of Fig. 5.7.

SEC. 5.3 DATA STRUCTURES FOR TREES 235

Leftmost-Child–Right-Sibling Representation of Trees

Using arrays of pointers for nodes is not necessarily space-efficient, because in typical
cases, the great majority of pointers will be NULL. That is certainly the case in Fig.
5.9, where no node has more than two non-NULL pointers. In fact, if we think about
it, we see that the number of pointers in any trie based on a 26-letter alphabet will
have 26 times as many spaces for pointers as there are nodes. Since no node can
have two parents and the root has no parent at all, it follows that among N nodes
there are only N − 1 non-NULL pointers; that is, less than one out of 26 pointers is
useful.

One way to overcome the space inefficiency of the array-of-pointers represen-
tation of a tree is to use linked lists to represent the children of nodes. The space
occupied by a linked list for a node is proportional to the number of children of that
node. There is, however, a time penalty with this representation; accessing the ith
child takes O(i) time, because we must traverse a list of length i − 1 to get to the
ith node. In comparison, we can get to the ith child in O(1) time, independent of
i, using an array of pointers to the children.

In the representation of trees called leftmost-child–right-sibling, we put into
each node a pointer only to its leftmost child; a node does not have pointers to any
of its other children. To find the second and subsequent children of a node n, we
create a linked list of those children, with each child c pointing to the child of n
immediately to the right of c. That node is called the right sibling of c.Right sibling

Example 5.11. In Fig. 5.1, n3 is the right sibling of n2, n4 is the right sibling
of n3, and n4 has no right sibling. We would find the children of n1 by following
its leftmost-child pointer to n2, then the right-sibling pointer to n3, and then the
right-sibling pointer of n3 to n4. There, we would find a NULL right-sibling pointer
and know that n1 has no more children.

Figure 5.10 contains a sketch of the leftmost-child–right-sibling representation
for the tree in Fig. 5.1. The downward arrows are the leftmost-child links; the
sideways arrows are the right-sibling links.

n1

n2 n3 n4

n5 n6 n7

Fig. 5.10. Leftmost-child–right-sibling representation for the tree in Fig. 5.1.

In a leftmost-child–right-sibling representation of a tree, nodes can be defined
as follows:

236 THE TREE DATA MODEL

typedef struct NODE *pNODE;

struct NODE {

int info;

pNODE leftmostChild, rightSibling;

};

The field info holds the label associated with the node and it can have any
type. The fields leftmostChild and rightSibling point to the leftmost child
and right sibling of the node in question. Note that while leftmostChild gives
information about the node itself, the field rightSibling at a node is really part
of the linked list of children of that node’s parent.

Example 5.12. Let us represent the trie of Fig. 5.7 in the leftmost-child–right-
sibling form. First, the type of nodes is

typedef struct NODE *pNODE;

struct NODE {

char letter;

int isWord;

pNODE leftmostChild, rightSibling;

};

The first two fields represent information, according to the scheme described in
Example 5.10. The trie of Fig. 5.7 is represented by the data structure shown
in Fig. 5.11. Notice that each leaf has a NULL leftmost-child pointer, and each
rightmost child has a NULL right-sibling pointer.

0

h 0 s 0

e 1 i 0 h 0

r 0 s 1 e 1

s 1

Fig. 5.11. Leftmost-child–right-sibling representation for the trie of Fig. 5.7.

SEC. 5.3 DATA STRUCTURES FOR TREES 237

As an example of how one uses the leftmost-child–right-sibling representation,
we see in Fig. 5.12 a function seek(let, n) that takes a letter let and a pointer
to a node n as arguments. It returns a pointer to the child of n that has let in its
letter field, and it returns NULL if there is no such node. In the while loop of Fig.
5.12, each child of n is examined in turn. We reach line (6) if either let is found or
we have examined all the children and thus have fallen out of the loop. In either
case, c holds the correct value, a pointer to the child holding let if there is one, and
NULL if not.

Notice that seek takes time proportional to the number of children that must
be examined until we find the child we are looking for, and if we never find it, then
the time is proportional to the number of children of node n. In comparison, using
the array-of-pointers representation of trees, seek could simply return the value of
the array element for letter let, taking O(1) time.

pNODE seek(char let, pNODE n)

{

(1) c = n->leftmostChild;

(2) while (c != NULL)

(3) if (c->letter == let)

(4) break;

else

(5) c = c->rightSibling;

(6) return c;

}

Fig. 5.12. Finding the child for a desired letter.

Parent Pointers

Sometimes, it is useful to include in the structure for each node a pointer to the
parent. The root has a NULL parent pointer. For example, the structure of Example
5.12 could become

typdef struct NODE *pNODE;

struct NODE {

char letter;

int isWord;

pNODE leftmostChild, rightSibling, parent;

};

With this structure, it becomes possible to determine what word a given node
represents. We repeatedly follow parent pointers until we come to the root, which
we can identify because it alone has the value of parent equal to NULL. The letter
fields encountered along the way spell the word, backward.

EXERCISES

5.3.1: For each node in the tree of Fig. 5.5, indicate the leftmost child and right
sibling.

238 THE TREE DATA MODEL

Comparison of Tree Representations

We summarize the relative merits of the array-of-pointers (trie) and the leftmost-
child–right-sibling representations for trees:

The array-of-pointers representation offers faster access to children, requiring
O(1) time to reach any child, no matter how many children there are.

The leftmost-child–right-sibling representation uses less space. For instance,
in our running example of the trie of Fig. 5.7, each node contains 26 pointers
in the array representation and two pointers in the leftmost-child–right-sibling
representation.

The leftmost-child–right-sibling representation does not require that there be
a limit on the branching factor of nodes. We can represent trees with any
branching factor, without changing the data structure. However, if we use the
array-of-pointers representation, once we choose the size of the array, we cannot
represent a tree with a larger branching factor.

5.3.2: Represent the tree of Fig. 5.5

a) As a trie with branching factor 3

b) By leftmost-child and right-sibling pointers

How many bytes of memory are required by each representation?

5.3.3: Consider the following set of singular personal pronouns in English: I, my,
mine, me, you, your, yours, he, his, him, she, her, hers. Augment the trie of Fig.
5.7 to include all thirteen of these words.

5.3.4: Suppose that a complete dictionary of English contains 2,000,000 words and
that the number of prefixes of words— that is, strings of letters that can be extended
at the end by zero or more additional letters to form a word — is 10,000,000.

a) How many nodes would a trie for this dictionary have?

b) Suppose that we use the structure in Example 5.10 to represent nodes. Let
pointers require four bytes, and suppose that the information fields letter

and isWord each take one byte. How many bytes would the trie require?

c) Of the space calculated in part (b), how much is taken up by NULL pointers?

5.3.5: Suppose we represent the dictionary described in Exercise 5.3.4 by using the
structure of Example 5.12 (a leftmost-child–right-sibling representation). Under
the same assumptions about space required by pointers and information fields as in
Exercise 5.3.4(b), how much space does the tree for the dictionary require? What
portion of that space is NULL pointers?

5.3.6: In a tree, a node c is the lowest common ancestor of nodes x and y if c is anLowest common

ancestor ancestor of both x and y, and no proper descendant of c is an ancestor of x and y.
Write a program that will find the lowest common ancestor of any pair of nodes in
a given tree. What is a good data structure for trees in such a program?

SEC. 5.4 RECURSIONS ON TREES 239

5.4 Recursions on Trees

The usefulness of trees is highlighted by the number of recursive operations on trees
that can be written naturally and cleanly. Figure 5.13 suggests the general form of a
recursive function F (n) that takes a node n of a tree as argument. F first performs
some steps (perhaps none), which we represent by action A0. Then F calls itself
on the first child, c1, of n. During this recursive call, F will “explore” the subtree
rooted at c1, doing whatever it is F does to a tree. When that call returns to the
call at node n, some other action — say A1 — is performed. Then F is called on
the second child of n, resulting in exploration of the second subtree, and so on, with
actions at n alternating with calls to F on the children of n.

n

c1 c2 · · · ck

(a) General form of a tree.

F (n)
{

action A0;

F (c1);
action A1;

F (c2);
action A2;

· · ·
F (ck);
action Ak;

}

(b) General form of recursive function F (n) on a tree.

Fig. 5.13. A recursive function on a tree.

Example 5.13. A simple recursion on a tree produces what is known as thePreorder

preorder listing of the node labels of the tree. Here, action A0 prints the label of the
node, and the other actions do nothing other than some “bookkeeping” operations
that enable us to visit each child of a given node. The effect is to print the labels
as we would first meet them if we started at the root and circumnavigated the
tree, visiting all the nodes in a counterclockwise tour. Note that we print the
label of a node only the first time we visit that node. The circumnavigation is
suggested by the arrow in Fig. 5.14, and the order in which the nodes are visited is
+a+∗−b−c−∗d∗+. The preorder listing is the sequence of node labels +a∗−bcd.

Let us suppose that we use a leftmost-child–right-sibling representation of nodes
in an expression tree, with labels consisting of a single character. The label of an
interior node is the arithmetic operator at that node, and the label of a leaf is

240 THE TREE DATA MODEL

+

a ∗

− d

b c

Fig. 5.14. An expression tree and its circumnavigation.

a letter standing for an operand. Nodes and pointers to nodes can be defined as
follows:

typedef struct NODE *pNODE;

struct NODE {

char nodeLabel;

pNODE leftmostChild, rightSibling;

};

The function preorder is shown in Fig. 5.15. In the explanation that follows, it is
convenient to think of pointers to nodes as if they were the nodes themselves.

void preorder(pNODE n)

{

pNODE c; /* a child of node n */

(1) printf("%c\n", n->nodeLabel);

(2) c = n->leftmostChild;

(3) while (c != NULL) {

(4) preorder(c);

(5) c = c->rightSibling;

}

}

Fig. 5.15. Preorder traversal function.

Action “A0” consists of the following parts of the program in Fig. 5.15:

1. Printing the label of node n, at line (1),

2. Initializing c to be the leftmost child of n, at line (2), and

3. Performing the first test for c != NULL, at line (3).

Line (2) initializes a loop in which c becomes each child of n, in turn. Note that if
n is a leaf, then c is assigned the value NULL at line (2).

We go around the while-loop of lines (3) to (5) until we run out of children
of n. For each child, we call the function preorder recursively on that child, at
line (4), and then advance to the next child, at line (5). Each of the actions Ai,

SEC. 5.4 RECURSIONS ON TREES 241

for i ≥ 1, consists of line (5), which moves c through the children of n, and the
test at line (3) to see whether we have exhausted the children. These actions are
for bookkeeping only; in comparison, line (1) in action A0 does the significant step,
printing the label.

The sequence of events for calling preorder on the root of the tree in Fig. 5.14
is summarized in Fig. 5.16. The character at the left of each line is the label of the
node n at which the call of preorder(n) is currently being executed. Because no
two nodes have the same label, it is convenient here to use the label of a node as
its name. Notice that the characters printed are +a ∗ −bcd, in that order, which is
the same as the order of circumnavigation.

call preorder(+)
(+) print +
(+) call preorder(a)
(a) print a
(+) call preorder(∗)
(∗) print ∗
(∗) call preorder(−)
(−) print −
(−) call preorder(b)
(b) print b
(−) call preorder(c)
(c) print c
(∗) call preorder(d)
(d) print d

Fig. 5.16. Action of recursive function preorder on tree of Fig. 5.14.

Example 5.14. Another common way to order the nodes of the tree, called
postorder, corresponds to circumnavigating the tree as in Fig. 5.14 but listing aPostorder

node the last time it is visited, rather than the first. For instance, in Fig. 5.14, the
postorder listing is abc− d ∗+.

To produce a postorder listing of the nodes, the last action does the printing,
and so a node’s label is printed after the postorder listing function is called on all
of its children, in order from the left. The other actions initialize the loop through
the children or move to the next child. Note that if a node is a leaf, all we do is list
the label; there are no recursive calls.

If we use the representation of Example 5.13 for nodes, we can create postorder
listings by the recursive function postorder of Fig. 5.17. The action of this function
when called on the root of the tree in Fig. 5.14 is shown in Fig. 5.18. The same
convention regarding node names is used here as in Fig. 5.16.

Example 5.15. Our next example requires us to perform significant actions
among all of the recursive calls on subtrees. Suppose we are given an expression
tree with integers as operands, and with binary operators, and we wish to produce

242 THE TREE DATA MODEL

void postorder(pNODE n)

{

pNODE c; /* a child of node n */

(1) c = n->leftmostChild;

(2) while (c != NULL) {

(3) postorder(c);

(4) c = c->rightSibling;

}

(5) printf("%c\n", n->nodeLabel);

}

Fig. 5.17. Recursive postorder function.

call postorder(+)
(+) call postorder(a)
(a) print a
(+) call postorder(∗)
(∗) call postorder(−)
(−) call postorder(b)
(b) print b
(−) call postorder(c)
(c) print c
(−) print −
(∗) call postorder(d)
(d) print d
(∗) print ∗
(+) print +

Fig. 5.18. Action of recursive function postorder on tree of Fig. 5.14.

the numerical value of the expression represented by the tree. We can do so by
executing the following recursive algorithm on the expression tree.

BASIS. For a leaf we produce the integer value of the node as the value of the tree.Evaluating an

expression tree

INDUCTION. Suppose we wish to compute the value of the expression formed by
the subtree rooted at some node n. We evaluate the subexpressions for the two
subtrees rooted at the children of n; these are the values of the operands for the
operator at n. We then apply the operator labeling n to the values of these two
subtrees, and we have the value of the entire subtree rooted at n.

We define a pointer to a node and a node as follows:

SEC. 5.4 RECURSIONS ON TREES 243

Prefix and Postfix Expressions

When we list the labels of an expression tree in preorder, we get the prefix ex-
pression equivalent to the given expression. Similarly, the list of the labels of an
expression tree in postorder yields the equivalent postfix expression. Expressions in
the ordinary notation, where binary operators appear between their operands, are
called infix expressions. For instance, the expression tree of Fig. 5.14 has the infixInfix expression

expression a + (b − c) ∗ d. As we saw in Examples 5.13 and 5.14, the equivalent
prefix expression is +a ∗ −bcd, and the equivalent postfix expression is abc− d ∗+.

An interesting fact about prefix and postfix notations is that, as long as each
operator has a unique number of arguments (e.g., we cannot use the same symbol
for binary and unary minus), then no parentheses are ever needed, yet we can still
unambiguously group operators with their operands.

We can construct an infix expression from a prefix expression as follows. In
the prefix expression, we find an operator that is followed by the required number
of operands, with no embedded operators. In the prefix expression +a ∗ −bcd, for
example, the subexpression −bc is such a string, since the minus sign, like all oper-
ators in our running example, takes two operands. We replace this subexpression
by a new symbol, say x = −bc, and repeat the process of identifying an operator
followed by its operands. In our example, we now work with +a ∗ xd. At this point
we identify the subexpression y = ∗xd and reduce the remaining string to +ay.
Now the remaining string is just an instance of an operator and its operands, and
so we convert it to the infix expression a+ y.

We may now reconstruct the remainder of the infix expression by retracing
these steps. We observe that the subexpression y = ∗xd in infix is x ∗ d, and so we
may substitute for y in a+ y to get a + (x ∗ d). Note that in general, parentheses
are needed in infix expressions, although in this case, we can omit them because
of the convention that ∗ takes precedence over + when grouping operands. Then
we substitute for x = −bc the infix expression b − c, and so our final expression is
a+

(

(b − c) ∗ d
)

, which is the same as that represented by the tree of Fig. 5.14.
For a postfix expression, we can use a similar algorithm. The only difference is

that we look for an operator preceded by the requisite number of operands in order
to decompose a postfix expression.

typedef struct NODE *pNODE;

struct NODE {

char op;

int value;

pNODE leftmostChild, rightSibling;

};

The field op will hold either the character for an arithmetic operator, or the char-
acter i, which stands for “integer” and identifies a node as a leaf. If the node is a
leaf, then the value field holds the integer represented; value is not used at interior
nodes.

This notation allows operators with any number of arguments, although we
shall write code on the simplifying assumption that all operators are binary. The
code appears in Fig. 5.19.

244 THE TREE DATA MODEL

int eval(pNODE n)

{

int val1, val2; /* values of first and second subtrees */

(1) if (n->op) == ’i’) /* n points to a leaf */

(2) return n->value;

else {/* n points to an interior node */

(3) val1 = eval(n->leftmostChild);

(4) val2 = eval(n->leftmostChild->rightSibling);

(5) switch (n->op) {

(6) case ’+’: return val1 + val2;

(7) case ’-’: return val1 - val2;

(8) case ’*’: return val1 * val2;

(9) case ’/’: return val1 / val2;

}

}

}

Fig. 5.19. Evaluating an arithmetic expression.

If the node n is a leaf, then the test of line (1) succeeds and we return the
integer label of that leaf at line (2). If the node is not a leaf, then we evaluate its
left operand at line (3) and its right operand at line (4), storing the results in val1

and val2, respectively. Note in connection with line (4) that the second child of a
node n is the right sibling of the leftmost child of the node n. Lines (5) through (9)
form a switch statement, in which we decide what the operator at n is and apply
the appropriate operation to the values of the left and right operands.

+

5 ∗

− 2

10 3

Fig. 5.20. An expression tree with integer operands.

For instance, consider the expression tree of Fig. 5.20. We see in Fig. 5.21
the sequence of calls and returns that are made at each node during the evaluation
of this expression. As before, we have taken advantage of the fact that labels are
unique and have named nodes by their labels.

Example 5.16. Sometimes we need to determine the height of each node in a
tree. The height of a node can be defined recursively by the following function:

SEC. 5.4 RECURSIONS ON TREES 245

call eval(+)
(+) call eval(5)
(5) return 5
(+) call eval(∗)
(∗) call eval(−)
(−) call eval(10)
(10) return 10
(−) call eval(3)
(3) return 3
(−) return 7
(∗) call eval(2)
(2) return 2
(∗) return 14
(+) return 19

Fig. 5.21. Actions of function eval at each node on tree of Fig. 5.20.

BASIS. The height of a leaf is 0.Computing the

height of a tree

INDUCTION. The height of an interior node is 1 greater than the largest of the
heights of its children.

We can translate this definition into a recursive program that computes the height
of each node into a field height:

BASIS. At a leaf, set the height to 0.

INDUCTION. At an interior node, recursively compute the heights of the children,
find the maximum, add 1, and store the result into the height field.

This program is shown in Fig. 5.22. We assume that nodes are structures of
the form

typedef struct NODE *pNODE;

struct NODE {

int height;

pNODE leftmostChild, rightSibling;

};

The function computeHt takes a pointer to a node as argument and computes the
height of that node in the field height. If we call this function on the root of a
tree, it will compute the heights of all the nodes of that tree.

At line (1) we initialize the height of n to 0. If n is a leaf, we are done, because
the test of line (3) will fail immediately, and so the height of any leaf is computed
to be 0. Line (2) sets c to be (a pointer to) the leftmost child of n. As we go around
the loop of lines (3) through (7), c becomes each child of n in turn. We recursively
compute the height of c at line (4). As we proceed, the value in n->height will
be 1 greater than the height of the highest child seen so far, but 0 if we have not
seen any children. Thus, lines (5) and (6) allow us to increase the height of n if we

246 THE TREE DATA MODEL

Still More Defensive Programming

Several aspects of the program in Fig. 5.19 exhibit a careless programming style that
we would avoid were it not our aim to illustrate some points concisely. Specifically,
we are following pointers without checking first whether they are NULL. Thus, in
line (1), n could be NULL. We really should begin the program by saying

if (n != NULL) /* then do lines (1) to (9) */

else /* print an error message */

Even if n is not NULL, in line (3) we might find that its leftmostChild field is
NULL, and so we should check whether n->leftmostChild is NULL, and if so, print
an error message and not call eval. Similarly, even if the leftmost child of n exists,
that node might not have a right sibling, and so before line (4) we need to check
that

n->leftmostChild->rightSibling != NULL

It is also tempting to rely on the assumption that the information contained
in the nodes of the tree is correct. For example, if a node is an interior node, it
is labeled by a binary operator, and we have assumed it has two children and the
pointers followed in lines (3) and (4) cannot possibly be NULL. However, it may be
possible that the operator label is incorrect. To handle this situation properly, we
should add a default case to the switch statement to detect unanticipated operator
labels.

As a general rule, relying on the assumption that inputs to programs will always
be correct is simplistic at best; in reality, “whatever can go wrong, will go wrong.”
A program, if it is used more than once, is bound to see data that is not of the
form the programmer envisioned. One cannot be too careful in practice – blindly
following NULL pointers or assuming that input data is always correct are common
programming errors.

void computeHt(pNODE n)

{

pNODE c;

(1) n->height = 0;

(2) c = n->leftmostChild;

(3) while (c != NULL) {

(4) computeHt(c);

(5) if (c->height >= n->height)

(6) n->height = 1+c->height;

(7) c = c->rightSibling;

}

}

Fig. 5.22. Procedure to compute the height of all the nodes of a tree.

find a new child that is higher than any previous child. Also, for the first child, the

SEC. 5.4 RECURSIONS ON TREES 247

test of line (5) will surely be satisfied, and we set n->height to 1 more than the
height of the first child. When we fall out of the loop because we have seen all the
children, n->height has been set to 1 more than the maximum height of any of n’s
children.

EXERCISES

5.4.1: Write a recursive program to count the number of nodes in a tree that is
represented by leftmost-child and right-sibling pointers.

5.4.2: Write a recursive program to find the maximum label of the nodes of a tree.
Assume that the tree has integer labels, and that it is represented by leftmost-child
and right-sibling pointers.

5.4.3: Modify the program in Fig. 5.19 to handle trees containing unary minus
nodes.

5.4.4*: Write a recursive program that computes for a tree, represented by leftmost-
child and right-sibling pointers, the number of left-right pairs, that is, pairs of nodes
n and m such that n is to the left of node m. For example, in Fig. 5.20, node 5 is
to the left of the nodes labeled ∗, −, 10, 3, and 2; node 10 is to the left of nodes 3
and 2; 3 is to the left of 2, and node − is to the left of node 2. Thus, the answer
for this tree is nine pairs. Hint : Let your recursive function return two pieces of
information when called on a node n: the number of left-right pairs in the subtree
rooted at n, and also the number of nodes in the subtree rooted at n.

5.4.5: List the nodes of the tree in Fig. 5.5 (see the Exercises for Section 5.2) in
(a) preorder and (b) postorder.

5.4.6: For each of the expressions

i) (x+ y) ∗ (x+ z)

ii)
(

(x− y) ∗ z + (y − w)
)

∗ x

iii)

(

(

(

(a ∗ x+ b) ∗ x+ c
)

∗ x+ d
)

∗ x+ e

)

∗ x+ f

do the following:

a) Construct the expression tree.

b) Find the equivalent prefix expression.

c) Find the equivalent postfix expression.

5.4.7: Convert the expression ab + c ∗ de − /f+ from postfix to (a) infix and (b)
prefix.

5.4.8: Write a function that “circumnavigates” a tree, printing the name of a node
each time it is passed.

5.4.9: What are the actions A0, A1, and so forth, for the postorder function in Fig.
5.17? (“Actions” are as indicated in Fig. 5.13.)

248 THE TREE DATA MODEL

5.5 Structural Induction

In Chapters 2 and 3 we saw a number of inductive proofs of properties of integers.
We would assume that some statement is true about n, or about all integers less
than or equal to n, and use this inductive hypothesis to prove the same statement
is true about n + 1. A similar but not identical form of proof, called “structural
induction,” is useful for proving properties about trees. Structural induction is
analogous to recursive algorithms on trees, and this form of induction is generally
the easiest to use when we wish to prove something about trees.

Suppose we want to prove that a statement S(T) is true for all trees T . For
a basis, we show that S(T) is true when T consists of a single node. For the
induction, we suppose that T is a tree with root r and children c1, c2, . . . , ck, for
some k ≥ 1. Let T1, T2, . . . , Tk be the subtrees of T whose roots are c1, c2, . . . , ck,
respectively, as suggested by Fig. 5.23. Then the inductive step is to assume that
S(T1), S(T2), . . . , S(Tk) are all true and prove S(T). If we do so, then we can
conclude that S(T) is true for all trees T . This form of argument is called structural
induction. Notice that a structural induction does not make reference to the exact
number of nodes in a tree, except to distinguish the basis (one node) from the
inductive step (more than one node).

n

c1 c2 · · · ck

T1 T2 Tk

Fig. 5.23. A tree and its subtrees.

(1) if (n->op) == ’i’) /* n points to a leaf */

(2) return n->value;

else {/* n points to an interior node */

(3) val1 = eval(n->leftmostChild);

(4) val2 = eval(n->leftmostChild->rightSibling);

(5) switch (n->op) {

(6) case ’+’: return val1 + val2;

(7) case ’-’: return val1 - val2;

(8) case ’*’: return val1 * val2;

(9) case ’/’: return val1 / val2;

}

}

Fig. 5.24. The body of the function eval(n) from Fig. 5.19.

SEC. 5.5 STRUCTURAL INDUCTION 249

Example 5.17. A structural induction is generally needed to prove the cor-
rectness of a recursive program that acts on trees. As an example, let us reconsider
the function eval of Fig. 5.19, the body of which we reproduce as Fig. 5.24. This
function is applied to a tree T by being given a pointer to the root of T as the value
of its argument n. It then computes the value of the expression represented by T .
We shall prove by structural induction the following statement:

STATEMENT S(T): The value returned by eval when called on the root of T
equals the value of the arithmetic expression represented by T .

BASIS. For the basis, T consists of a single node. That is, the argument n is a
(pointer to a) leaf. Since the op field has the value ’i’ when the node represents
an operand, the test of line (1) in Fig. 5.24 succeeds, and the value of that operand
is returned at line (2).

INDUCTION. Suppose the node n is not a (pointer to a) leaf. The inductive
hypothesis is that S(T ′) is true for each tree T ′ rooted at one of the children of n.
We must use this reasoning to prove S(T) for the tree T rooted at n.

Since our operators are assumed to be binary, n has two subtrees. By the
inductive hypothesis, the values of val1 and val2 computed at lines (3) and (4)
respectively, are the values of the left and right subtrees. Figure 5.25 suggests these
two subtrees; val1 holds the value of T1 and val2 holds the value of T2.

+ n

T1 T2

Fig. 5.25. The call eval(n) returns the sum of the values of T1 and T2.

If we examine the switch statement of lines (5) through (9), we see that what-
ever operator appears at the root n is applied to the two values val1 and val2. For
example, if the root holds +, as in Fig. 5.25, then at line (5) the value returned is
val1 + val2, as it should be for an expression that is the sum of the expressions of
trees T1 and T2. We have now completed the inductive step.

We conclude that S(T) holds for all expression trees T , and, therefore, the
function eval correctly evaluates trees that represent expressions.

Example 5.18. Now let us consider the function computeHt of Fig. 5.22, the
body of which we reproduce as Fig. 5.26. This function takes as argument a (pointer
to a) node n and computes the height of n. We shall prove the following statement
by structural induction:

250 THE TREE DATA MODEL

(1) n->height = 0;

(2) c = n->leftmostChild;

(3) while (c != NULL) {

(4) computeHt(c);

(5) if (c->height >= n->height)

(6) n->height = 1+c->height;

(7) c = c->rightSibling;

}

Fig. 5.26. The body of the function computeHt(n) from Fig. 5.22.

STATEMENT S(T): When computeHt is called on a pointer to the root of tree
T , the correct height of each node in T is stored in the height field of that
node.

BASIS. If the tree T is a single node n, then at line (2) of Fig. 5.26, c will be given
the value NULL, since n has no children. Thus, the test of line (3) fails immediately,
and the body of the while-loop is never executed. Since line (1) sets n->height to
0, which is the correct value for a leaf, we conclude that S(T) holds when T has a
single node.

INDUCTION. Now suppose n is the root of a tree T that is not a single node. Then
n has at least one child. We may assume by the inductive hypothesis that when
computeHt(c) is called at line (4), the correct height is installed in the height field
of each node in the subtree rooted at c, including c itself. We need to show that
the while-loop of lines (3) through (7) correctly sets n->height to 1 more than
the maximum of the heights of the children of n. To do so, we need to perform
another induction, which is nested “inside” the structural induction, just as one loop
might be nested within another loop in a program. This induction is an “ordinary”
induction, not a structural induction, and its statement is

STATEMENT S′(i): After the loop of lines (3) to (7) has been executed i times,
the value of n->height is 1 more than the largest of the heights of the first
i children of n.

BASIS. The basis is i = 1. Since n->height is set to 0 outside the loop — at line
(1) — and surely no height can be less than 0, the test of line (5) will be satisfied.
Line (6) sets n->height to 1 more than the height of its first child.

INDUCTION. Assume that S′(i) is true. That is, after i iterations of the loop,
n->height is 1 larger than the largest height among the first i children. If there is
an (i+1)st child, then the test of line (3) will succeed and we execute the body an
(i+ 1)st time. The test of line (5) compares the new height with the largest of the
previous heights. If the new height, c->height, is less than 1 plus the largest of
the first i heights, no change to n->height will be made. That is correct, since the
maximum height of the first i+1 children is the same as the maximum height of the
first i children. However, if the new height is greater than the previous maximum,

SEC. 5.5 STRUCTURAL INDUCTION 251

A Template for Structural Induction

The following is an outline for building correct structural inductions.

1. Specify the statement S(T) to be proved, where T is a tree.

2. Prove the basis, that S(T) is true whenever T is a tree with a single node.

3. Set up the inductive step by letting T be a tree with root r and k ≥ 1 subtrees,
T1, T2, . . . , Tk. State that you assume the inductive hypothesis: that S(Ti) is
true for each of the subtrees Ti, i = 1, 2, . . . , k.

4. Prove that S(T) is true under the assumptions mentioned in (3).

then the test of line (5) will succeed, and n->height is set to 1 more than the height
of the (i+ 1)st child, which is correct.

We can now return to the structural induction. When the test of line (3) fails,
we have considered all the children of n. The inner induction, S′(i), tells us that
when i is the total number of children, n->height is 1 more than the largest height
of any child of n. That is the correct height for n. The inductive hypothesis S
applied to each of the children of n tells us that the correct height has been stored
in each of their height fields. Since we just saw that n’s height has also been
correctly computed, we conclude that all the nodes in T have been assigned their
correct height.

We have now completed the inductive step of the structural induction, and we
conclude that computeHt correctly computes the height of each node of every tree
on which it is called.

Why Structural Induction Works

The explanation for why structural induction is a valid proof method is similar to
the reason ordinary inductions work: if the conclusion were false, there would be
a smallest counterexample, and that counterexample would violate either the basis
or the induction. That is, suppose there is a statement S(T) for which we have
proved the basis and the structural induction step, yet there are one or more trees
for which S is false. Let T0 be a tree such that S(T0) is false, but let T0 have as few
nodes as any tree for which S is false.

There are two cases. First, suppose that T0 consists of a single node. Then
S(T0) is true by the basis, and so this case cannot occur.

The only other possibility is that T0 has more than one node — say, m nodes —
and therefore T0 consists of a root r with one or more children. Let the trees rooted
at these children be T1, T2, . . . , Tk. We claim that none of T1, T2, . . . , Tk can have
more than m− 1 nodes. For if one — say Ti — did have m or more nodes, then T0,
which consists of Ti and the root node r, possibly along with other subtrees, would
have at least m+ 1 nodes. That contradicts our assumption that T0 has exactly m
nodes.

Now since each of the subtrees T1, T2, . . . , Tk has m − 1 or fewer nodes, we
know that these trees cannot violate S, because we chose T0 to be as small as any

252 THE TREE DATA MODEL

A Relationship between Structural and Ordinary Induction

There is a sense in which structural induction really offers nothing new. Suppose we
have a statement S(T) about trees that we want to prove by structural induction.
We could instead prove

STATEMENT S′(i): For all trees T of i nodes, S(T) is true.

S′(i) has the form of an ordinary induction on the integer i, with basis i = 1. It can
be proved by complete induction, where we assume S′(j) for all j ≤ i, and prove
S′(i + 1). This proof, however, would look exactly like the proof of S(T), if we let
T stand for an arbitrary tree of i+ 1 nodes.

tree making S false. Thus, we know that S(T1), S(T2), . . . , S(Tk) are all true. The
inductive step, which we assume proved, tells us that S(T0) is also true. Again we
contradict the assumption that T0 violates S.

We have considered the two possible cases, a tree of one node or a tree with
more than one node, and have found that in either case, T0 cannot be a violation
of S. Therefore, S has no violations, and S(T) must be true for all trees T .

EXERCISES

5.5.1: Prove by structural induction that

a) The preorder traversal function of Fig. 5.15 prints the labels of the tree in
preorder.

b) The postorder function in Fig. 5.17 lists the labels in postorder.

5.5.2*: Suppose that a trie with branching factor b is represented by nodes in the
format of Fig. 5.6. Prove by structural induction that if a tree T has n nodes, then
there are 1+ (b− 1)n NULL pointers among its nodes. How many non-NULL pointers
are there?

5.5.3*: The degree of a node is the number of children that node has.2 Prove byDegree of a

node structural induction that in any tree T , the number of nodes is 1 more than the
sum of the degrees of the nodes.

5.5.4*: Prove by structural induction that in any tree T , the number of leaves is 1
more than the number of nodes that have right siblings.

5.5.5*: Prove by structural induction that in any tree T represented by the leftmost-
child–right-sibling data structure, the number of NULL pointers is 1 more than the
number of nodes.

5.5.6*: At the beginning of Section 5.2 we gave recursive and nonrecursive defini-
tions of trees. Use a structural induction to show that every tree in the recursive
sense is a tree in the nonrecursive sense.

2 The branching factor and the degree are related concepts, but not the same. The branching
factor is the maximum degree of any node in the tree.

SEC. 5.6 BINARY TREES 253

A Fallacious Form of Tree Induction

It often is tempting to perform inductions on the number of nodes of the tree, where
we assume a statement for n-node trees and prove it for (n + 1)-node trees. This
proof will be fallacious if we are not very careful.

When doing inductions on integers in Chapter 2, we suggested the proper
methodology, in which we try to prove statement S(n+ 1) by using S(n); call this
approach “leaning back.” Sometimes one might be tempted to view this process as
starting with S(n) and proving S(n+ 1); call this approach “pushing out.” In the
integer case, these are essentially the same idea. However, with trees, we cannot
start by assuming the statement for an n-node tree, add a node somewhere, and
claim that the result is proved for all (n+ 1)-node trees.

For example, consider the claim S(n): “all n-node trees have a path of length
n−1.” It is surely true for the basis, n = 1. In a false “induction,” we might argue:Danger:

erroneous

argument

“Assume an n-node tree T has a path of length n− 1, say to node v. Add a child
u to v. We now have an (n + 1)-node tree with a path of length n, proving the
inductive step.”

This argument is, of course, fallacious because it does not prove the result for
all (n+1)-node trees, just some selected trees. A correct proof does not “push out”
from n to n + 1 nodes, because we do not thus reach all possible trees. Rather,
we must “lean back” by starting with an arbitrary (n+ 1)-node tree and carefully
selecting a node to remove to get an n-node tree.

5.5.7**: Show the converse of Exercise 5.5.6: every tree in the nonrecursive sense
is a tree in the recursive sense.

5.6 Binary Trees

This section presents another kind of tree, called a binary tree, which is different
from the “ordinary” tree introduced in Section 5.2. In a binary tree, a node can
have at most two children, and rather than counting children from the left, thereLeft and right

children are two “slots,” one for a left child and the other for a right child. Either or both
slots may be empty.

n1

n2

n1

n2

Fig. 5.27. The two binary trees with two nodes.

Example 5.19. Figure 5.27 shows two binary trees. Each has node n1 as root.
The first has n2 as the left child of the root and no right child. The second has no
left child, and has n2 as the right child of the root. In both trees, n2 has neither a
left nor a right child. These are the only binary trees with two nodes.

254 THE TREE DATA MODEL

We shall define binary trees recursively, as follows.

BASIS. The empty tree is a binary tree.

INDUCTION. If r is a node, and T1 and T2 are binary trees, then there is a binary
tree with root r, left subtree T1, and right subtree T2, as suggested in Fig. 5.28.
That is, the root of T1 is the left child of r, unless T1 is the empty tree, in which
case r has no left child. Similarly, the root of T2 is the right child of r, unless T2 is
empty, in which case r has no right child.

r

T1 T2

Fig. 5.28. Recursive construction of a binary tree.

Binary Tree Terminology

The notions of paths, ancestors, and descendants introduced in Section 5.2 also ap-
ply to binary trees. That is, left and right children are both regarded as “children.”
A path is still a sequence of nodes m1,m2, . . . ,mk such that mi+1 is a (left or right)
child of mi, for i = 1, 2, . . . , k− 1. This path is said to be from m1 to mk. The case
k = 1 is permitted, where the path is just a single node.

The two children of a node, if they exist, are siblings. A leaf is a node with
neither a left nor a right child; equivalently, a leaf is a node whose left and right
subtrees are both empty. An interior node is a node that is not a leaf.

Path length, height, and depth are defined exactly as for ordinary trees. The
length of a path in a binary tree is 1 less than the number of nodes; that is, the
length is the number of parent-child steps along the path. The height of a node n is
the length of the longest path from n to a descendant leaf. The height of a binary
tree is the height of its root. The depth of a node n is the length of the path from
the root to n.

Example 5.20. Figure 5.29 shows the five shapes that a binary tree of three
nodes can have. In each binary tree in Fig. 5.29, n3 is a descendant of n1, and there
is a path from n1 to n3. Node n3 is a leaf in each tree, while n2 is a leaf in the
middle tree and an interior node in the other four trees.

The height of n3 is 0 in each tree, while the height of n1 is 2 in all but the
middle tree, where the height of n1 is 1. The height of each tree is the same as the
height of n1 in that tree. Node n3 is of depth 2 in all but the middle tree, where it
is of depth 1.

SEC. 5.6 BINARY TREES 255

The Difference Between (Ordinary) Trees and Binary Trees

It is important to understand that while binary trees require us to distinguish
whether a child is either a left child or a right child, ordinary trees require no such
distinction. That is, binary trees are not just trees all of whose nodes have two or
fewer children. Not only are the two trees in Fig. 5.27 different from each other,
but they have no relation to the ordinary tree consisting of a root and a single child
of the root:

n1

n2

There is another technical difference. While trees are defined to have at least one
node, it is convenient to include the empty tree, the tree with no nodes, among theEmpty tree

binary trees.

n1

n2

n3

n1

n2

n3

n1

n2 n3

n1

n2

n3

n1

n2

n3

Fig. 5.29. The five binary trees with three nodes.

Data Structures for Binary Trees

There is one natural way to represent binary trees. Nodes are represented by records
with two fields, leftChild and rightChild, pointing to the left and right children
of the node, respectively. A NULL pointer in either of these fields indicates that the
corresponding left or right subtree is missing — that is, that there is no left or right
child, respectively.

A binary tree can be represented by a pointer to its root. The empty binary tree
is represented naturally by NULL. Thus, the following type declarations represent
binary trees:

typedef struct NODE *TREE;

struct NODE {

TREE leftChild, rightChild;

};

Here, we call the type “pointer to node” by the name TREE, since the most common
use for this type will be to represent trees and subtrees. We can interpret the
leftChild and rightChild fields either as pointers to the children or as the left
and right subtrees themselves.

Optionally, we can add to the structure for NODE a label field or fields, and/or

256 THE TREE DATA MODEL

we can add a pointer to the parent. Note that the type of the parent pointer is
*NODE, or equivalently TREE.

Recursions on Binary Trees

There are many natural algorithms on binary trees that can be described recursively.
The scheme for recursions is more limited than was the scheme of Fig. 5.13 for
ordinary trees, since actions can only occur either before the left subtree is explored,
between the exploration of the subtrees, or after both have been explored. The
scheme for recursions on binary trees is suggested by Fig. 5.30.

{

action A0;

recursive call on left subtree;
action A1;

recursive call on right subtree;
action A2;

}

Fig. 5.30. Template of a recursive algorithm on a binary tree.

Example 5.21. Expression trees with binary operators can be represented by
binary trees. These binary trees are special, because nodes have either two children
or none. (Binary trees in general can have nodes with one child.) For instance, the
expression tree of Fig. 5.14, reproduced here as Fig. 5.31, can be thought of as a
binary tree.

+

a ∗

− d

b c

Fig. 5.31. The expression a+ (b− c) ∗ d represented by a binary tree.

Suppose we use the type

typedef struct NODE *TREE;

struct NODE {

char nodeLabel;

TREE leftChild, rightChild;

};

SEC. 5.6 BINARY TREES 257

void preorder(TREE t)

{

(1) if (t != NULL) {

(2) printf("%c\n", t->nodeLabel);

(3) preorder(t->leftChild);

(4) preorder(t->rightChild);

}

}

Fig. 5.32. Preorder listing of binary trees.

for nodes and trees. Then Fig. 5.32 shows a recursive function that lists the labels
of the nodes of a binary tree T in preorder.

The behavior of this function is similar to that of the function of the same name
in Fig. 5.15 that was designed to work on ordinary trees. The significant difference
is that when the function of Fig. 5.32 comes to a leaf, it calls itself on the (missing)
left and right children. These calls return immediately, because when t is NULL,
none of the body of the function except the test of line (1) is executed. We could
save the extra calls if we replaced lines (3) and (4) of Fig. 5.32 by

(3) if (t->leftChild != NULL) preorder(t->leftChild);

(4) if (t->rightChild != NULL) preorder(t->rightChild);

However, that would not protect us against a call to preorder from another func-
tion, with NULL as the argument. Thus, we would have to leave the test of line (1)
in place for safety.

EXERCISES

5.6.1: Write a function that prints an inorder listing of the (labels of the) nodes
of a binary tree. Assume that the nodes are represented by records with left-child
and right-child pointers, as described in this section.

5.6.2: Write a function that takes a binary expression tree and prints a fully paren-
thesized version of the represented expression. Assume the same data structure as
in Exercise 5.6.1.

5.6.3*: Repeat Exercise 5.6.2 but print only the needed parentheses, assuming the
usual precedence and associativity of arithmetic operators.

5.6.4: Write a function that produces the height of a binary tree.

5.6.5: Define a node of a binary tree to be a full if it has both a left and a rightFull binary tree

child. Prove by structural induction that the number of full nodes in a binary tree
is 1 fewer than the number of leaves.

5.6.6: Suppose we represent a binary tree by the left-child, right-child record type.
Prove by structural induction that the number of NULL pointers is 1 greater than
the number of nodes.

258 THE TREE DATA MODEL

Inorder Traversals

In addition to preorder and postorder listings of binary trees, there is another
ordering of nodes that makes sense for binary trees only. An inorder listing of
the nodes of a binary tree is formed by listing each node after exploring the left
subtree, but before exploring the right subtree (i.e., in the position for action A1

of Fig. 5.30). For example, on the tree of Fig. 5.31, the inorder listing would be
a+ b− c ∗ d.

A preorder traversal of a binary tree that represents an expression produces
the prefix form of that expression, and a postorder traversal of the same tree pro-
duces the postfix form of the expression. The inorder traversal almost produces the
ordinary, or infix, form of an expression, but the parentheses are missing. That is,
the tree of Fig. 5.31 represents the expression a+ (b− c) ∗ d, which is not the same
as the inorder listing, a+ b− c ∗ d, but only because the necessary parentheses are
missing from the latter.

To be sure that needed parentheses are present, we could parenthesize all op-
erators. In this modified inorder traversal, action A0, the step performed before
exploring the left subtree, checks whether the label of the node is an operator and,
if so, prints ’(’, a left parenthesis. Similarly, action A2, performed after exploring
both subtrees, prints a right parenthesis, ’)’, if the label is an operator. The result,

applied to the binary tree of Fig. 5.31, would be
(

a+
(

(b− c) ∗ d
)

)

, which has the

needed pair of parentheses around b − c, along with two pairs of parentheses that
are redundant.

5.6.7**: Trees can be used to represent recursive calls. Each node represents a
recursive call of some function F , and its children represent the calls made by F .
In this exercise, we shall consider the recursion for

(

n

m

)

given in Section 4.5, based

on the recursion
(

n

m

)

=
(

n−1

m

)

+
(

n−1

m−1

)

. Each call can be represented by a binary

tree. If a node corresponds to the computation of
(

n
m

)

, and the basis cases (m = 0

and m = n) do not apply, then the left child represents
(

n−1

m

)

and the left child

represents
(

n−1

m−1

)

. If the node represents a basis case, then it has neither left nor
right child.

a) Prove by structural induction that a binary tree with root corresponding to
(

n
m

)

has exactly 2
(

n
m

)

− 1 nodes.

b) Use (a) to show that the running time of the recursive algorithm for
(

n

m

)

is

O
(

(

n
m

)

)

. Note that this running time is therefore also O(2n), but the latter is

a smooth-but-not-tight bound.

5.7 Binary Search Trees

A common activity found in a variety of computer programs is the maintenance of
a set of values from which we wish to

SEC. 5.7 BINARY SEARCH TREES 259

Structural Inductions on Binary Trees

A structural induction can be applied to a binary tree as well as to an ordinary
tree. There is, in fact, a somewhat simpler scheme to use, in which the basis is an
empty tree. Here is a summary of the technique.

1. Specify the statement S(T) to be proved, where T is a binary tree.

2. Prove the basis, that S(T) is true if T is the empty tree.

3. Set up the inductive step by letting T be a tree with root r and subtrees TL and
TR. State that you assume the inductive hypothesis: that S(TL) and S(TR)
are true.

4. Prove that S(T) is true under the assumptions mentioned in (3).

1. Insert elements into the set,

2. Delete elements from the set, and

3. Look up an element to see whether it is currently in the set.

One example is a dictionary of English words, where from time to time we insert a
new word, such as fax, delete a word that has fallen into disuse, such as aegilops,
or look up a string of letters to see whether it is a word (as part of a spelling-checker
program, for instance).

Because this example is so familiar, a set upon which we can execute theDictionary

operations insert, delete, and lookup, as defined above, is called a dictionary, no
matter what the set is used for. As another example of a dictionary, a professor
might keep a roll of the students in a class. Occasionally, a student will be added
to the class (an insert), or will drop the class (a delete), or it will be necessary to
tell whether a certain student is registered for the class (a lookup).

One good way to implement a dictionary is with a binary search tree, which
is a kind of labeled binary tree. We assume that the labels of nodes are chosen
from a set with a “less than” order, which we shall write as <. Examples include
the reals or integers with the usual less than order; or character strings, with the
lexicographic or alphabetic order represented by <.

A binary search tree (BST) is a labeled binary tree in which the following
property holds at every node x in the tree: all nodes in the left subtree of x have
labels less than the label of x, and all nodes in the right subtree have labels greaterBinary search

tree property than the label of x. This property is called the binary search tree property.

Example 5.22. Figure 5.33 shows a binary search tree for the set

{Hairy, Bashful, Grumpy, Sleepy, Sleazy, Happy}

where the < order is lexicographic. Note that the names in the left subtree of the
root are all lexicographically less than Hairy, while those in the right subtree are
all lexicographically greater. This property holds at every node of the tree.

260 THE TREE DATA MODEL

Hairy

Bashful Sleepy

Grumpy Sleazy

Happy

Fig. 5.33. Binary search tree with six nodes labeled by strings.

Implementation of a Dictionary as a Binary Search Tree

We can represent a binary search tree as any labeled binary tree. For example, we
might define the type NODE by

typedef struct NODE *TREE;

struct NODE {

ETYPE element;

TREE leftChild, rightChild;

};

A binary search tree is represented by a pointer to the root node of the binary search
tree. The type of an element, ETYPE, should be set appropriately. Throughout the
programs of this section, we shall assume ETYPE is int so that comparisons between
elements can be done simply using the arithmetic comparison operators <, == and
>. In the examples involving lexicographic comparisons, we assume the comparisons
in the programs will be done by the appropriate comparison functions lt, eq, and
gt as discussed in Section 2.2.

Looking Up an Element in a Binary Search Tree

Suppose we want to look for an element x that may be in a dictionary represented
by a binary search tree T . If we compare x with the element at the root of T , we
can take advantage of the BST property to locate x quickly or determine that x is
not present. If x is at the root, we are done. Otherwise, if x is less than the element
at the root, x could be found only in the left subtree (by the BST property); and if
x is greater, then it could be only in the right subtree (again, because of the BST
property). That is, we can express the lookup operation by the following recursive
algorithm.

BASIS. If the tree T is empty, then x is not present. If T is not empty, and x
appears at the root, then x is present.

SEC. 5.7 BINARY SEARCH TREES 261

Abstract Data Types

A collection of operations, such as insert, delete, and lookup, that may be performed
on a set of objects or a certain kind is sometimes called an abstract data type or
ADT. The concept is also variously called a class, or a module. We shall study
several abstract data types in Chapter 7, and in this chapter, we shall see one more,
the priority queue.

An ADT can have more than one abstract implementation. For example, we
shall see in this section that the binary search tree is a good way to implement
the dictionary ADT. Lists are another plausible, though usually less efficient, way
to implement the dictionary ADT. Section 7.6 covers hashing, another good imple-
mentation of the dictionary.

Each abstract implementation can, in turn, be implemented concretely by sev-
eral different data structures. As an example, we shall use the left-child–right-child
implementation of binary trees as a data structure implementing a binary search
tree. This data structure, along with the appropriate functions for insert, delete,
and lookup, becomes an implementation of the dictionary ADT.

An important reason for using ADT’s in programs is that the data underlying
the ADT is accessible only through the operations of the ADT, such as insert.
This restriction is a form of defensive programming, protecting against accidental
alteration of data by functions that manipulate the data in unexpected ways. A
second important reason for using ADT’s is that they allow us to redesign the data
structures and functions implementing their operations, perhaps to improve the
efficiency of operations, without having to worry about introducing errors into the
rest of the program. There can be no new errors if the only interface to the ADT
is through correctly rewritten functions for its operations.

INDUCTION. If T is not empty but x is not at the root, let y be the element at the
root of T . If x < y look up x only in the left subtree of the root, and if x > y look
up x only in the right subtree of y. The BST property guarantees that x cannot be
in the subtree we do not search.

Example 5.23. Suppose we want to look up Grumpy in the binary search tree
of Fig. 5.33. We compare Grumpy with Hairy at the root and find that Grumpy

precedes Hairy in lexicographic order. We thus call lookup on the left subtree.
The root of the left subtree is Bashful, and we compare this label with Grumpy,

finding that the former precedes the latter. We thus call lookup recursively on the
right subtree of Bashful. Now we find Grumpy at the root of this subtree and return
TRUE. These steps would be carried out by a function modeled after Fig. 5.34 that
dealt with lexicographic comparisons.

More concretely, the recursive function lookup(x,T) in Fig. 5.34 implements
this algorithm, using the left-child–right-child data structure. Note that lookup

returns a value of type BOOLEAN, which is a defined type synonymous with int, but
with the intent that only defined values TRUE and FALSE, defined to be 1 and 0,
respectively, will be used. Type BOOLEAN was introduced in Section 1.6. Also, note
that lookup is written only for types that can be compared by =, <, and so on. It
would require rewriting for data like the character strings used in Example 5.23.

262 THE TREE DATA MODEL

At line (1), lookup determines whether T is empty. If not, then at line (3)
lookup determines whether x is stored at the current node. If x is not there, then
lookup recursively searches the left subtree or right subtree depending on whether
x is less than or greater than the element stored at the current node.

BOOLEAN lookup(ETYPE x, TREE T)

{

(1) if (T == NULL)

(2) return FALSE;

(3) else if (x == T->element)

(4) return TRUE;

(5) else if (x < T->element)

(6) return lookup(x, T->leftChild);

else /* x must be > T->element */

(7) return lookup(x, T->rightChild);

}

Fig. 5.34. Function lookup(x,T) returns TRUE if x is in T , FALSE otherwise.

Inserting an Element into a Binary Search Tree

Adding a new element x to a binary search tree T is straightforward. The following
recursive algorithm sketches the idea:

BASIS. If T is an empty tree, replace T by a tree consisting of a single node and
place x at that node. If T is not empty and its root has element x, then x is already
in the dictionary, and we do nothing.

INDUCTION. If T is not empty and does not have x at its root, then insert x into
the left subtree if x is less than the element at the root, or insert x into the right
subtree if x is greater than the element at the root.

The function insert(x,T) shown in Fig. 5.35 implements this algorithm for
the left-child–right-child data structure. When we find that the value of T is NULL
at line (1), we create a new node, which becomes the tree T . This tree is created
by lines (2) through (5) and returned at line (10).

If x is not found at the root of T , then, at lines (6) through (9), insert is
called on the left or right subtree, whichever is appropriate. The subtree, modified
by the insertion, becomes the new value of the left or right subtree of the root of T
at lines (7) or (9), respectively. Line (10) returns the augmented tree.

Notice that if x is at the root of T , then none of the tests of lines (1), (6),
and (8) succeed. In this case, insert returns T without doing anything, which is
correct, since x is already in the tree.

Example 5.24. Let us continue with Example 5.23, understanding that techni-
cally, the comparison of character strings requires slightly different code from that
of Fig. 5.35, in which arithmetic comparisons like < are replaced by calls to suit-
ably defined functions like lt. Figure 5.36 shows the binary search tree of Fig. 5.33

SEC. 5.7 BINARY SEARCH TREES 263

TREE insert(ETYPE x, TREE T)

{

(1) if (T == NULL) {

(2) T = (TREE) malloc(sizeof(struct NODE));

(3) T->element = x;

(4) T->leftChild = NULL;

(5) T->rightChild = NULL;

}

(6) else if (x < T->element)

(7) T->leftChild = insert(x, T->leftChild);

(8) else if (x > T->element)

(9) T->rightChild = insert(x, T->rightChild);

(10) return T;

}

Fig. 5.35. Function insert(x,T) adds x to T .

after we insert Filthy. We begin by calling insert at the root, and we find that
Filthy < Hairy. Thus, we call insert on the left child, at line (7) of Fig. 5.35.
The result is that we find Filthy > Bashful, and so we call insert on the right
child, at line (9). That takes us to Grumpy, which follows Filthy in lexicographic
order, and we call insert on the left child of Grumpy.

The pointer to the left child of Grumpy is NULL, so at line (1) we discover that
we must create a new node. This one-node tree is returned to the call of insert at
the node for Grumpy, and the tree is installed as the value of the left child of Grumpy
at line (7). The modified tree with Grumpy and Filthy is returned to the call of
insert at the node labeled Bashful, and this modified tree becomes the right child
of Bashful. Then, continuing up the tree, the new tree rooted at Bashful becomes
the left child of the root of the entire tree. The final tree is shown in Fig. 5.36.

Hairy

Bashful Sleepy

Grumpy Sleazy

Filthy Happy

Fig. 5.36. Binary search tree after inserting Filthy.

264 THE TREE DATA MODEL

Deleting an Element from a Binary Search Tree

Deleting an element x from a binary search tree is a little more complicated than
lookup or insert. To begin, we may locate the node containing x; if there is no such
node, we are done, since x is not in the tree to begin with. If x is at a leaf, we can
simply delete the leaf. If x is at an interior node n, however, we cannot delete that
node, because to do so would disconnect the tree.

We must rearrange the tree in some way so that the BST property is maintained
and yet x is no longer present. There are two cases. First, if n has only one child,
we can replace n by that child, and the BST property will be maintained.

x n

< x > x

y n

< y > y

⇒

Fig. 5.37. To delete x, remove the node containing y, the smallest element in the
right subtree, and then replace the label x by y at node n.

Second, suppose n has both children present. One strategy is to find the node
m with label y, the smallest element in the right subtree of n, and replace x by y
in node n, as suggested by Fig. 5.37. We can then remove node m from the right
subtree.

The BST property continues to hold. The reason is that x is greater than
everything in the left subtree of n, and so y, being greater than x (because y is
in the right subtree of n), is also greater than everything in the left subtree of n.
Thus, as far as the left subtree of n is concerned, y is a suitable element at n. As
far as the right subtree of n is concerned, y is also suitable as the root, because y
was chosen to be the smallest element in the right subtree.

ETYPE deletemin(TREE *pT)

{

ETYPE min;

(1) if ((*pT)->leftChild == NULL) {

(2) min = (*pT)->element;

(3) (*pT) = (*pT)->rightChild;

(4) return min;

}

else

(5) return deletemin(&((*pT)->leftChild));

}

Fig. 5.38. Function deletemin(pT) removes and returns the smallest element from T .

SEC. 5.7 BINARY SEARCH TREES 265

It is convenient to define a function deletemin(pT), shown in Fig. 5.38, to
remove the node containing the smallest element from a nonempty binary search
tree and to return the value of that smallest element. We pass to the function an
argument that is the address of the pointer to the tree T. All references to T in the
function are done indirectly through this pointer.

This style of tree manipulation, where we pass the function an argument that
is a pointer to a place where a pointer to a node (i.e., a tree) is found, is called call
by reference. It is essential in Fig. 5.38 because at line (3), where we have foundCall by

reference a pointer to a node m whose left child is NULL, we wish to replace this pointer by
another pointer — the pointer in the rightChild field of m. If the argument of
deletemin were a pointer to a node, then the change would take place locally to the
call to deletemin, and there would not actually be a change to the pointers in the
tree itself. Incidentally, we could use the call-by-reference style to implement insert
as well. In that case, we could modify the tree directly and not have to return a
revised tree as we did in Fig. 5.35. We leave such a revised insert function as an
exercise.

Now, let us see how Fig. 5.38 works. We locate the smallest element by following
left children until we find a node whose left child is NULL at line (1) of Fig. 5.38.
The element y at this node m must be the smallest in the subtree. To see why,
first observe that y is smaller than the element at any ancestor of m in the subtree,
because we have followed only left children. The only other nodes in the subtree
are either in the right subtree of m, in which case their elements are surely larger
than y by the BST property, or in the right subtree of one of m’s ancestors. But
elements in the right subtrees are greater than the element at some ancestor of m,
and therefore greater than y, as suggested by Fig. 5.39.

Having found the smallest element in the subtree, we record this value at line
(2), and at line (3) we replace the node of the smallest element by its right subtree.
Note that when we delete the smallest element from the subtree, we always have
the easy case of deletion, because there is no left subtree.

The only remaining point regarding deletemin is that when the test of line (1)
fails, meaning that we are not yet at the smallest element, we proceed to the left
child. That step is accomplished by the recursive call at line (5).

The function delete(x,pT) is shown in Fig. 5.40. If pT points to an empty tree
T , there is nothing to do, and the test of line (1) makes sure that nothing is done.
Otherwise, the tests of lines (2) and (4) handle the cases where x is not at the root,
and we are directed to the left or right subtree, as appropriate. If we reach line (6),
then x must be at the root of T , and we must replace the root node. Line (6) tests
for the possibility that the left child is NULL, in which case we simply replace T by
its right subtree at line (7). Similarly, if at line (8) we find that the right child is
NULL then at line (9) we replace T by its left subtree. Note that if both children of
the root are NULL, then we replace T by NULL at line (7).

The remaining case, where neither child is NULL, is handled at line (10). We
call deletemin, which returns the smallest element, y, of the right subtree and also
deletes y from that subtree. The assignment of line (10) replaces x by y at the root
of T .

Example 5.25. Figure 5.41 shows what would happen if we used a function
similar to delete (but able to compare character strings) to remove Hairy from the

266 THE TREE DATA MODEL

zk

zk−1

<

> zk

· · ·

<

> zk−1

z1

<

<

y

<

> z1

> y

Fig. 5.39. All the other elements in the right subtree are greater than y.

void delete(ETYPE x, TREE *pT)

{

(1) if ((*pT) != NULL)

(2) if (x < (*pT)->element)

(3) delete(x, &((*pT)->leftChild));

(4) else if (x > (*pT)->element)

(5) delete(x, &((*pT)->rightChild));

else /* here, x is at the root of (*pT) */

(6) if ((*pT)->leftChild == NULL)

(7) (*pT) = (*pT)->rightChild;

(8) else if ((*pT)->rightChild == NULL)

(9) (*pT) = (*pT)->leftChild;

else /* here, neither child is NULL */

(10) (*pT)->element =

deletemin(&((*pT)->rightChild));

}

Fig. 5.40. Function delete(x,pT) removes the element x from T .

binary search tree of Fig. 5.36. Since Hairy is at a node with two children, delete
calls the function deletemin, which removes and returns the smallest element,
Happy, from the right subtree of the root. Happy then becomes the label of the root
of the tree, the node at which Hairy was stored.

SEC. 5.7 BINARY SEARCH TREES 267

Happy

Bashful Sleepy

Grumpy Sleazy

Filthy

Fig. 5.41. Binary search tree after deleting Hairy.

EXERCISES

5.7.1: Suppose that we use a leftmost-child–right-sibling implementation for binary
search trees. Rewrite the functions that implement the dictionary operations insert,
delete, and lookup to work for this data structure.

5.7.2: Show what happens to the binary search tree of Fig. 5.33 if we insert the
following dwarfs in order: Doc, Dopey, Inky, Blinky, Pinky, and Sue. Then show
what happens when we delete in order: Doc, Sleazy, and Hairy.

5.7.3: Rewrite the functions lookup, insert, and delete to use lexicographic
comparisons on strings instead of arithmetic comparisons on integers.

5.7.4*: Rewrite the function insert so that the tree argument is passed by refer-
ence.

5.7.5*: We wrote delete in the “call by reference” style. However, it is also
possible to write it in a style like that of our insert function, where it takes a
tree as argument (rather than a pointer to a tree) and returns the tree missing the
deleted element. Write this version of the dictionary operation delete. Note: It is
not really possible to have deletemin return a revised tree, since it must also return
the minimum element. We could rewrite deletemin to return a structure with both
the new tree and the minimum element, but that approach is not recommended.

5.7.6: Instead of handling the deletion of a node with two children by finding the
least element in the right subtree, we could also find the greatest element in the left
subtree and use that to replace the deleted element. Rewrite the functions delete
and deletemin from Figs. 5.38 and 5.40 to incorporate this modification.

5.7.7*: Another way to handle delete when we need to remove the element at a
node n that has parent p, (nonempty) left child l, and (nonempty) right child r is to
find the node m holding the least element in the right subtree of n. Then, make r
a left or right child of p, whichever n was, and make l the left child of m (note that

268 THE TREE DATA MODEL

m cannot previously have had a left child). Show why this set of changes preserves
the BST property. Would you prefer this strategy to the one described in Section
5.7? Hint : For both methods, consider their effect on the lengths of paths. As we
shall see in the next section, short paths make the operations run fast.

5.7.8*: In this exercise, refer to the binary search tree represented in Fig. 5.39.
Show by induction on i that if 1 ≤ i ≤ k, then y < zi. Then, show that y is the
least element in the tree rooted at zk.

5.7.9: Write a complete C program to implement a dictionary that stores integers.
Accept commands of the form x i, where x is one of the letters i (insert), d (delete),
and l (lookup). Integer i is the argument of the command, the integer to be inserted,
deleted, or searched for.

5.8 Efficiency of Binary Search Tree Operations

The binary search tree provides a reasonably fast implementation of a dictionary.
First, notice that each of the operations insert, delete, and lookup makes a number
of recursive calls equal to the length of the path followed (but this path must include
the route to the smallest element of the right subtree, in case deletemin is called).
Also, a simple analysis of the functions lookup, insert, delete, and deletemin

tells us that each operation takes O(1) time, plus the time for one recursive call.
Moreover, since this recursive call is always made at a child of the current node,
the height of the node in each successive call decreases by at least 1.

Thus, if T (h) is the time taken by any of these functions when called with
a pointer to a node of height h, we have the following recurrence relation upper-
bounding T (h):

BASIS. T (0) = O(1). That is, when called on a leaf, the call either terminates
without further calls or makes a recursive call with a NULL argument and then
returns without further calls. All of this work takes O(1) time.

INDUCTION. T (h) ≤ T (h− 1) +O(1) for h ≥ 1. That is, the time taken by a call
on any interior node is O(1) plus the time for a recursive call, which is on a node
of height at most h− 1. If we make the reasonable assumption that T (h) increases
with increasing h, then the time for the recursive call is no greater than T (h− 1).

The solution to the recurrence for T (h) is O(h), as discussed in Section 3.9.
Thus, the running time of each dictionary operation on a binary search tree of n
nodes is at most proportional to the height of the tree. But what is the height of a
typical binary search tree of n nodes?

The Worst Case

In the worst case, all the nodes in the binary tree will be arranged in a single path,
like the tree of Fig. 5.42. That tree would result, for example, from taking a list of
k elements in sorted order and inserting them one at a time into an initially empty
tree. There are also trees in which the single path does not consist of right children
only but is a mixture of right and left children, with the path taking a turn either
left or right at each interior node.

SEC. 5.8 EFFICIENCY OF BINARY SEARCH TREE OPERATIONS 269

n1

n2

· · ·

nk

Fig. 5.42. A degenerate binary tree.

The height of a k-node tree like Fig. 5.42 is clearly k − 1. We thus expect
that lookup, insert, and delete will take O(k) time on a dictionary of k elements, if
the representation of that dictionary happens to be one of these unfortunate trees.
Intuitively, if we need to look for element x, on the average we shall find it halfway
down the path, requiring us to look at k/2 nodes. If we fail to find x, we shall
likewise have to search down the tree until we come to the place where x would be
found, which will also be halfway down, on the average. Since each of the operations
lookup, insert, and delete requires searching for the element involved, we know that
these operations each take O(k) time on the average, given one of the bad trees of
the form of Fig. 5.42.

The Best Case

However, a binary tree need not grow long and thin like Fig. 5.42; it could be short
and bushy like Fig. 5.43. A tree like the latter, where every interior node down to
some level has both children present and the next level has all the leaves, is called
a full or complete tree.Complete tree

n1

n2 n3

n4 n5 n6 n7

Fig. 5.43. Full binary tree with seven nodes.

A complete binary tree of height h has 2h+1−1 nodes. We can prove this claim
by induction on the height h.

BASIS. If h = 0, the tree consists of a single node. Since 20+1 − 1 = 1, the basis
case holds.

270 THE TREE DATA MODEL

INDUCTION. Suppose that a complete binary tree of height h has 2h+1 − 1 nodes,
and consider a complete binary tree of height h+1. This tree consists of one node at
the root and left and right subtrees that are complete binary trees of height h. For
example, the height-2 complete binary tree of Fig. 5.43 consists of the root, n1; a left
subtree containing n2, n4, and n5, which is a complete binary tree of height 1; and
a right subtree consisting of the remaining three nodes, which is another complete
binary tree of height 1. Now the number of nodes in two complete binary trees of
height h is 2(2h+1 − 1), by the inductive hypothesis. When we add the root node,
we find that a complete binary tree of height h+ 1 has 2(2h+1 − 1) + 1 = 2h+2 − 1
nodes, which proves the inductive step.

Now we can invert this relationship and say that a complete binary tree of
k = 2h+1− 1 nodes has height h. Equivalently, k+1 = 2h+1. If we take logarithms,
then log2(k+1) = h+1, or approximately, h is O(log k). Since the running time of
lookup, insert, and delete is proportional to the height of the tree, we can conclude
that on a complete binary tree, these operations take time that is logarithmic in the
number of nodes. That performance is much better than the linear time taken for
pessimal trees like Fig. 5.42. As the dictionary size becomes large, the running time
of the dictionary operations grows much more slowly than the number of elements
in the set.

The Typical Case

Is Fig. 5.42 or Fig. 5.43 the more common case? Actually, neither is common
in practice, but the complete tree of Fig. 5.43 offers efficiency of the dictionary
operations that is closer to what the typical case provides. That is, lookup, insert,
and delete take logarithmic time, on the average.

A proof that the typical binary tree offers logarithmic time for the dictionary
operations is difficult. The essential point of the proof is that the expected value of
the length of a path from the root of such a tree to a random node is O(log n). A
recurrence equation for this expected value is given in the exercises.

However, we can see intuitively why that should be the correct running time,
as follows. The root of a binary tree divides the nodes, other than itself, into two
subtrees. In the most even division, a k-node tree will have two subtrees of about
k/2 nodes each. That case occurs if the root element happens to be exactly in the
middle of the sorted list of elements. In the worst division, the root element is first
or last among the elements of the dictionary and the division is into one subtree
that is empty and another subtree of k − 1 nodes.

On the average, we could expect the root element to be halfway between the
middle and the extremes in the sorted list; and we might expect that, on the average,
about k/4 nodes go into the smaller subtree and 3k/4 nodes into the larger. Let
us assume that as we move down the tree we always move to the root of the larger
subtree at each recursive call and that similar assumptions apply to the distribution
of elements at each level. At the first level, the larger subtree will be divided in the
1:3 ratio, leaving a largest subtree of (3/4)(3k/4), or 9k/16, nodes at the second
level. Thus, at the dth-level, we would expect the largest subtree to have about
(3/4)dk nodes.

When d becomes sufficiently large, the quantity (3/4)dk will be close to 1, and
we can expect that, at this level, the largest subtree will consist of a single leaf.

SEC. 5.9 PRIORITY QUEUES AND PARTIALLY ORDERED TREES 271

Thus, we ask, For what value of d is (3/4)dk ≤ 1? If we take logarithms to the base
2, we get

d log2(3/4) + log2 k ≤ log2 1 (5.1)

Now log2 1 = 0, and the quantity log2(3/4) is a negative constant, about −0.4.
Thus we can rewrite (5.1) as log2 k ≤ 0.4d, or d ≥ (log2 k)/0.4 = 2.5 log2 k.

Put another way, at a depth of about two and a half times the logarithm to the
base 2 of the number of nodes, we expect to find only leaves (or to have found the
leaves at higher levels). This argument justifies, but does not prove, the statement
that the typical binary search tree will have a height that is proportional to the
logarithm of the number of nodes in the tree.

EXERCISES

5.8.1: If tree T has height h and branching factor b, what are the largest and
smallest numbers of nodes that T can have?

5.8.2**: Perform an experiment in which we choose one of the n! orders for n
different values and insert the values in this order into an initially empty binary
search tree. Let P (n) be the expected value of the depth of the node at which a
particular value v among the n values is found after this experiment.

a) Show that, for n ≥ 2,

P (n) = 1 +
2

n2

n−1
∑

k=1

kP (k)

b) Prove that P (n) is O(log n).

5.9 Priority Queues and Partially Ordered Trees

So far, we have seen only one abstract data type, the dictionary, and one imple-
mentation for it, the binary search tree. In this section we shall study another
abstract data type and one of its most efficient implementations. This ADT, called
a priority queue, is a set of elements each of which has an associated priority. For
example, the elements could be records and the priority could be the value of one
field of the record. The two operations associated with the priority queue ADT are
the following:

1. Inserting an element into the set (insert).

2. Finding and deleting from the set an element of highest priority (this combined
operation is called deletemax). The deleted element is returned by this function.

Example 5.26. A time-shared operating system accepts requests for service
from various sources, and these jobs may not all have the same priority. For example,
at highest priority may be the system processes; these would include the “daemons”
that watch for incoming data, such as the signal generated by a keystroke at a
terminal or the arrival of a packet of bits over a local area network. Then may
come user processes, the commands issued by ordinary users. Below these we may

272 THE TREE DATA MODEL

have certain background jobs such as backup of data to tape or long calculations
that the user has designated to run with a low priority.

Jobs can be represented by records consisting of an integer ID for the job and
an integer for the job’s priority. That is, we might use the structure

struct ETYPE {

int jobID;

int priority;

};

for elements of a priority queue. When a new job is initiated, it gets an ID and a
priority. We then execute the insert operation for this element on the priority queue
of jobs waiting for service. When a processor becomes available, the system goes
to the priority queue and executes the deletemax operation. The element returned
by this operation is a waiting job of highest priority, and that is the one executed
next.

Example 5.27. We can implement a sorting algorithm using the priority queue
ADT. Suppose we are given the sequence of integers a1, a2, . . . , an to sort. We
insert each into a priority queue, using the element’s value as its priority. If we
then execute deletemax n times, the integers will be selected highest first, or in the
reverse of their sorted (lowest-first) order. We shall discuss this algorithm in more
detail in the next section; it is known as heapsort.

Partially Ordered Trees

An efficient way to implement a priority queue is by a partially ordered tree (POT),
which is a labeled binary tree with the following properties:

1. The labels of the nodes are elements with a “priority”; that priority may be
the value of an element or the value of some component of an element.

2. The element stored at a node has at least as large a priority as the elements
stored at the children of that node.

Property 2 implies that the element at the root of any subtree is always a largestPOT property

element of that subtree. We call property 2 the partially ordered tree property, or
POT property.

Example 5.28. Figure 5.44 shows a partially ordered tree with 10 elements.
Here, as elsewhere in this section, we shall represent elements by their priorities, as
if the element and the priority were the same thing. Note that equal elements can
appear on different levels in the tree. To see that the POT property is satisfied at
the root, note that 18, the element there, is no less than the elements 18 and 16
found at its children. Similarly, we can check that the POT property holds at every
interior node. Thus, Fig. 5.44 is a partially ordered tree.

SEC. 5.9 PRIORITY QUEUES AND PARTIALLY ORDERED TREES 273

18

18 16

9 7 1 9

3 7 5

Fig. 5.44. Partially ordered tree with 10 nodes.

Partially ordered trees provide a useful abstract implementation for priority
queues. Briefly, to execute deletemax we find the node at the root, which must be
the maximum, and replace it by the rightmost node on the bottom level. However,
when we do so, the POT property may be violated, and so we must restore that
property by “bubbling down” the element newly placed at the root until it finds a
suitable level where it is smaller than its parent but at least as large as any of its
children. To execute insert, we can add a new leaf at the bottom level, as far left
as possible, or at the left end of a new level if the bottom level is full. Again there
may be a violation of the POT property, and if so, we “bubble up” the new element
until it finds its rightful place.

Balanced POTs and Heaps

We say that a partially ordered tree is balanced if all possible nodes exist at all levels
except the bottommost, and the leaves at the bottommost level are as far to the
left as possible. This condition implies that if the tree has n nodes, then no path
to a node from the root is longer than log2 n. The tree in Fig. 5.44 is a balanced
POT.

Balanced POTs can be implemented using an array data structure called a
heap, which provides a fast, compact implementation of the priority queue ADT. A
heap is simply an array A with a special interpretation for the element indices. We
start with the root in A[1]; A[0] is not used. Following the root, the levels appear
in order. Within a level, the nodes are ordered from left to right.

Thus, the left child of the root is in A[2], and the right child of the root is in
A[3]. In general, the left child of the node in A[i] is in A[2i] and the right child is in
A[2i+ 1], if these children exist in the partially ordered tree. The balanced nature
of the tree allows this representation. The POT property of the elements implies
that if A[i] has two children, then A[i] is at least as large as A[2i] and A[2i + 1],
and if A[i] has one child, then A[i] is at least as large as A[2i].

1 2 3 4 5 6 7 8 9 10

18 18 16 9 7 1 9 3 7 5

Fig. 5.45. Heap for Fig. 5.44.

274 THE TREE DATA MODEL

Layers of Implementation

It is useful to compare our two ADT’s, the dictionary and the priority queue, and
to notice that, in each case, we have given one abstract implementation and one
data structure for that implementation. There are other abstract implementations
for each, and other data structures for each abstract implementation. We promised
to discuss other abstract implementations for the dictionary, such as the hash table,
and in the exercises of Section 5.9 we suggest that the binary search tree may be
a suitable abstract implementation for the priority queue. The table below sum-
marizes what we already know about abstract implementations and data structures
for the dictionary and the priority queue.

ADT ABSTRACT IMPLEMENTATION DATA STRUCTURE

dictionary binary search left-child–right-child
tree structure

priority balanced partially heap
queue ordered tree

Example 5.29. The heap for the balanced partially ordered tree in Fig. 5.44
is shown in Fig. 5.45. For instance, A[4] holds the value 9; this array element
represents the left child of the left child of the root in Fig. 5.44. The children of
this node are found in A[8] and A[9]. Their elements, 3 and 7, are each no greater
than 9, as is required by the POT property. Array element A[5], which corresponds
to the right child of the left child of the root, has a left child in A[10]. It would
have a right child in A[11], but the partially ordered tree has only 10 elements at
the moment, and so A[11] is not part of the heap.

While we have shown tree nodes and array elements as if they were the prior-
ities themselves, in principle an entire record appears at the node or in the array.
As we shall see, we shall have to do much swapping of elements between children
and parents in a partially ordered tree or its heap representation. Thus, it is con-
siderably more efficient if the array elements themselves are pointers to the records
representing the objects in the priority queue and these records are stored in an-
other array “outside” the heap. Then we can simply swap pointers, leaving the
records in place.

Performing Priority Queue Operations on a Heap

Throughout this section and the next, we shall represent a heap by a global array
A[1..MAX] of integers. We assume that elements are integers and are equal to their
priorities. When elements are records, we can store pointers to the records in the
array and determine the priority of an element from a field in its record.

Suppose that we have a heap of n−1 elements satisfying the POT property, and
we add an nth element in A[n]. The POT property continues to hold everywhere,
except perhaps between A[n] and its parent. Thus, if A[n] is larger than A[n/2], the
element at the parent, we must swap these elements. Now there may be a violation
of the POT property between A[n/2] and its parent. If so, we recursively “bubble

SEC. 5.9 PRIORITY QUEUES AND PARTIALLY ORDERED TREES 275

up” the new element until it either reaches a position where the parent has a larger
element or reaches the root.

The C function bubbleUp to perform this operation is shown in Fig. 5.46. ItBubbling up

makes use of a function swap(A,i,j) that exchanges the elements in A[i] and A[j];
this function is also defined in Fig. 5.46. The operation of bubbleUp is simple.
Given argument i indicating the node that, with its parent, possibly violates the
POT property, we test whether i = 1 (that is, whether we are already at the root,
so that no POT violation can occur), and if not, whether the element A[i] is greater
than the element at its parent. If so, we swap A[i] with its parent and recursively
call bubbleUp at the parent.

void swap(int A[], int i, int j)

{

int temp;

temp = A[i];

A[i] = A[j];

A[j] = temp;

}

void bubbleUp(int A[], int i)

{

if (i > 1 && A[i] > A[i/2]) {

swap(A, i, i/2);

bubbleUp(A, i/2);

}

}

Fig. 5.46. The function swap exchanges array elements, and the function bubbleUp

pushes a new element of a heap into its rightful place.

Example 5.30. Suppose we start with the heap of Fig. 5.45 and we add an
eleventh element, with priority 13. This element goes in A[11], giving us the array

1 2 3 4 5 6 7 8 9 10 11

18 18 16 9 7 1 9 3 7 5 13

We now call bubbleUp(A,11), which compares A[11] with A[5] and finds that
we must swap these elements because A[11] is larger. That is, A[5] and A[11] violate
the POT property. Thus, the array becomes

1 2 3 4 5 6 7 8 9 10 11

18 18 16 9 13 1 9 3 7 5 7

Now we call bubbleUp(A,5). This results in comparison of A[2] and A[5]. Since
A[2] is larger, there is no POT violation, and bubbleUp(A,5) does nothing. We
have now restored the POT property to the array.

276 THE TREE DATA MODEL

We now show how to implement the priority queue operation insert. Let n beImplementation

of insert the current number of elements in the priority queue, and assume A[1..n] already
satisfies the POT property. We increment n and then store the element to be
inserted into the new A[n]. Finally, we call bubbleUp(A,n). The code for insert is
shown in Fig. 5.47. The argument x is the element to be inserted, and the argument
pn is a pointer to the current size of the priority queue. Note that n must be passed
by reference — that is, by a pointer to n — so that when n is incremented the
change has an affect that is not local only to insert. A check that n < MAX is
omitted.

void insert(int A[], int x, int *pn)

{

(*pn)++;

A[*pn] = x;

bubbleUp(A, *pn);

}

Fig. 5.47. Priority queue operation insert implemented on a heap.

To implement the priority queue operation deletemax, we need another opera-
tion on heaps or partially ordered trees, this time to bubble down an element at the
root that may violate the POT property. Suppose that A[i] is a potential violator
of the POT property, in that it may be smaller than one or both of its children,
A[2i] and A[2i + 1]. We can swap A[i] with one of its children, but we must be
careful which one. If we swap with the larger of the children, then we are sure not
to introduce a POT violation between the two former children of A[i], one of which
has now become the parent of the other.

The function bubbleDown of Fig. 5.48 implements this operation. After select-Bubbling down

ing a child with which to swap A[i], it calls itself recursively to eliminate a possible
POT violation between the element A[i] in its new position — which is now A[2i] or
A[2i+1] — and one of its new children. The argument n is the number of elements
in the heap, or, equivalently, the index of the last element.

void bubbleDown(int A[], int i, int n)

{

int child;

(1) child = 2*i;

(2) if (child < n && A[child+1] > A[child])

(3) ++child;

(4) if (child <= n && A[i] < A[child]) {

(5) swap(A, i, child);

(6) bubbleDown(A, child, n);

}

}

Fig. 5.48. bubbleDown pushes a POT violator down to its proper position.

SEC. 5.9 PRIORITY QUEUES AND PARTIALLY ORDERED TREES 277

This function is a bit tricky. We have to decide which child of A[i] to swap
with, if any, and the first thing we do is assume that the larger child is A[2i], at
line (1) of Fig. 5.48. If the right child exists (i.e., child < n) and the right child is
the larger, then the tests of line (2) are met and at line (3) we make child be the
right child of A[i].

Now at line (4) we test for two things. First, it is possible that A[i] really has
no children in the heap. We therefore check whether A[i] is an interior node by
asking whether child ≤ n. The second test of line (4) is whether A[i] is less than
A[child]. If both these conditions are met, then at line (5) we swap A[i] with its
larger child, and at line (6) we recursively call bubbleDown, to push the offending
element further down, if necessary.

We can use bubbleDown to implement the priority queue operation deletemaxImplementation

of deletemax as shown in Fig. 5.49. The function deletemax takes as arguments an array A and
a pointer pn to the number n that is the number of elements currently in the heap.
We omit a test that n > 0.

In line (1), we swap the element at the root, which is to be deleted, with the
last element, in A[n]. Technically, we should return the deleted element, but, as
we shall see, it is convenient to put it in A[n], which will no longer be part of the
heap.

At line (2), we decrement n by 1, effectively deleting the largest element, now
residing in the old A[n]. Since the root may now violate the POT property, we call
bubbleDown(A,1,n) at line (3), which will recursively push the offending element
down until it either reaches a point where it is no less than either of its children, or
becomes a leaf; either way, there is no violation of the POT property.

void deletemax(int A[], int *pn)

{

(1) swap(A, 1, *pn);

(2) --(*pn);

(3) bubbleDown(A, 1, *pn);

}

Fig. 5.49. Priority queue operation deletemax implemented by a heap.

Example 5.31. Suppose we start with the heap of Fig. 5.45 and execute
deletemax. After swapping A[1] and A[10], we set n to 9. The heap then becomes

1 2 3 4 5 6 7 8 9

5 18 16 9 7 1 9 3 7

When we execute bubbleDown(A,1,9), we set child to 2. Since A[2] ≥ A[3],
we do not increment child at line (3) of Fig. 5.48. Then since child ≤ n and
A[1] < A[2], we swap these elements, to obtain the array

1 2 3 4 5 6 7 8 9

18 5 16 9 7 1 9 3 7

278 THE TREE DATA MODEL

We then call bubbleDown(A,2,9). That requires us to compare A[4] with A[5]
at line (2), and we find that the former is larger. Thus, child = 4 at line (4)
of Fig. 5.48. When we find that A[2] < A[4], we swap these elements and call
bubbleDown(A,4,9) on the array

1 2 3 4 5 6 7 8 9

18 9 16 5 7 1 9 3 7

Next, we compare A[8] and A[9], finding that the latter is larger, so that child =
9 at line (4) of bubbleDown(A,4,9). We again perform the swap, since A[4] < A[9],
resulting in the array

1 2 3 4 5 6 7 8 9

18 9 16 7 7 1 9 3 5

Next, we call bubbleDown(A,9,9). We set child to 18 at line (1), and the first
test of line (2) fails, because child < n is false. Similarly, the test of line (4) fails,
and we make no swap or recursive call. The array is now a heap with the POT
property restored.

Running Time of Priority Queue Operations

The heap implementation of priority queues offers O(log n) running time per insert
or deletemax operation. To see why, let us first consider the insert program of
Fig. 5.47. This program evidently takes O(1) time for the first two steps, plus
whatever the call to bubbleUp takes. Thus, we need to determine the running time
of bubbleUp.

Informally, we notice that each time bubbleUp calls itself recursively, we are at
a node one position closer to the root. Since a balanced partially ordered tree has
height approximately log2 n, the number of recursive calls is O(log2 n). Since each
call to bubbleUp takes time O(1) plus the time of the recursive call, if any, the total
time should be O(log n).

More formally, let T (i) be the running time of bubbleUp(A,i). Then we can
create a recurrence relation for T (i) as follows.

BASIS. If i = 1, then T (i) is O(1), since it is easy to check that the bubbleUp

program of Fig. 5.46 does not make any recursive calls and only the test of the
if-statement is executed.

INDUCTION. If i > 1, then the if-statement test may fail anyway, because A[i]
does not need to rise further. If the test succeeds, then we execute swap, which
takes O(1) time, plus a recursive call to bubbleUp with an argument i/2 (or slightly
less if i is odd). Thus T (i) ≤ T (i/2) +O(1).

We thus have, for some constants a and b, the recurrence

T (1) = a
T (i) = T (i/2) + b for i > 1

as an upper bound on the running time of bubbleUp. If we expand T (i/2) we get

T (i) = T (i/2j) + bj (5.2)

SEC. 5.9 PRIORITY QUEUES AND PARTIALLY ORDERED TREES 279

for each j. As in Section 3.10, we choose the value of j that makes T (i/2j) simplest.
In this case, we make j equal to log2 i, so that i/2j = 1. Thus, (5.2) becomes
T (i) = a+ b log2 i; that is, T (i) is O(log i). Since bubbleUp is O(log i), so is insert.

Now consider deletemax. We can see from Fig. 5.49 that the running time of
deletemax is O(1) plus the running time of bubbleDown. The analysis of bubble-
Down, in Fig. 5.48, is essentially the same as that of bubbleUp. We omit it and
conclude that bubbleDown and deletemax also take O(log n) time.

EXERCISES

5.9.1: Starting with the heap of Fig. 5.45, show what happens when we

a) Insert 3

b) Insert 20

c) Delete the maximum element

d) Again delete the maximum element

5.9.2: Prove Equation (5.2) by induction on i.

5.9.3: Prove by induction on the depth of the POT-property violation that the
function bubbleUp of Fig. 5.46 correctly restores a tree with one violation to a tree
that has the POT property.

5.9.4: Prove that the function insert(A,x,n) makes A into a heap of size n, if A
was previously a heap of size n− 1. You may use Exercise 5.9.3. What happens if
A was not previously a heap?

5.9.5: Prove by induction on the height of the POT-property violation that the
function bubbleDown of Fig. 5.48 correctly restores a tree with one violation to a
tree that has the POT property.

5.9.6: Prove that deletemax(A,n) makes a heap of size n into one of size n − 1.
What happens if A was not previously a heap?

5.9.7: Prove that bubbleDown(A,1,n) takes O(log n) time on a heap of length n.

5.9.8**: What is the probability that an n-element heap, with distinct element
priorities chosen at random, is a partially ordered tree? If you cannot derive the
general rule, write a recursive function to compute the probability as a function of
n.

5.9.9: We do not need to use a heap to implement a partially ordered tree. Suppose
we use the conventional left-child–right-child data structure for binary trees. Show
how to implement the functions bubbleDown, insert, and deletemax using this
structure instead of the heap structure.

5.9.10*: A binary search tree can be used as an abstract implementation of a
priority queue. Show how the operations insert and deletemax can be implemented
using a binary search tree with the left-child–right-child data structure. What is
the running time of these operations (a) in the worst case and (b) on the average?

280 THE TREE DATA MODEL

5.10 Heapsort: Sorting with Balanced POTs

We shall now describe the algorithm known as heapsort. It sorts an array A[1..n]

in two phases. In the first phase, heapsort gives A the POT property. The second
phase of heapsort repeatedly selects the largest remaining element from the heap
until the heap consists of only the smallest element, whereupon the array A is
sorted.

heap large elements, sorted

↑
1

↑
i

↑
n

Fig. 5.50. Condition of array A during heapsort.

Figure 5.50 shows the array A during the second phase. The initial part of
the array has the POT property, and the remaining part has its elements sorted in
nondecreasing order. Furthermore, the elements in the sorted part are the largest
n − i elements in the array. During the second phase, i is allowed to run from n
down to 1, so that the heap, initially the entire array A, eventually shrinks until
it is only the smallest element, located in A[1]. In more detail, the second phase
consists of the following steps.

1. A[1], the largest element in A[1..i], is exchanged with A[i]. Since all elements
in A[i+1..n] are as large as or larger than any of A[1..i], and since we just
moved the largest of the latter group of elements to position i, we know that
A[i..n] are the largest n− i+ 1 elements and are in sorted order.

2. The value i is decremented, reducing the size of the heap by 1.

3. The POT property is restored to the initial part of the array by bubbling down
the element at the root, which we just moved to A[1].

Example 5.32. Consider the array in Fig. 5.45, which has the POT property.
Let us go through the first iteration of the second phase. In the first step, we
exchange A[1] and A[10] to get:

1 2 3 4 5 6 7 8 9 10

5 18 16 9 7 1 9 3 7 18

The second step reduces the heap size to 9, and the third step restores the POT
property to the first nine elements by calling bubbleDown(1). In this call, A[1] and
A[2] are exchanged:

1 2 3 4 5 6 7 8 9 10

18 5 16 9 7 1 9 3 7 18

Then, A[2] and A[4] are exchanged:

SEC. 5.10 HEAPSORT: SORTING WITH BALANCED POTS 281

1 2 3 4 5 6 7 8 9 10

18 9 16 5 7 1 9 3 7 18

Finally, A[4] and A[9] are exchanged:

1 2 3 4 5 6 7 8 9 10

18 9 16 7 7 1 9 3 5 18

At this point, A[1..9] has the POT property.

The second iteration of phase 2 begins by swapping the element 18 in A[1]

with the element 5 in A[9]. After bubbling 5 down, the array becomes

1 2 3 4 5 6 7 8 9 10

16 9 9 7 7 1 5 3 18 18

At this stage, the last two elements of the array are the two largest elements, in
sorted order.

Phase 2 continues until the array is completely sorted:

1 2 3 4 5 6 7 8 9 10

1 3 5 7 7 9 9 16 18 18

Heapifying an Array

We could describe heapsort informally as follows:

for (i = 1; i <= n; i++)

insert(ai);
for (i = 1; i <= n; i++)

deletemax

To implement this algorithm, we insert the n elements a1, a2, . . . , an to be sorted
into a heap that is initially empty. We then perform deletemax n times, getting
the elements in largest-first order. The arrangement of Fig. 5.50 allows us to store
the deleted elements in the tail of the array, as we shrink the heap portion of that
array.

Since we just argued in the last section that insert and deletemax take O(log n)
time each, and since we evidently execute each operation n times, we have an
O(n log n) sorting algorithm, which is comparable to merge sort. In fact, heapsort
can be superior to merge sort in a situation in which we only need a few of the
largest elements, rather than the entire sorted list. The reason is that we can make
the array be a heap in O(n) time, rather than O(n logn) time, if we use the function
heapify of Fig. 5.51.

282 THE TREE DATA MODEL

void heapify(int A[], int n)

{

int i;

for (i = n/2; i >= 1; i--)

bubbleDown(A, i, n);

}

Fig. 5.51. Heapifying an array.

Running Time of Heapify

At first, it might appear that the n/2 calls to bubbleDown in Fig. 5.51 should take
O(n log n) time in total, because logn is the only upper bound we know on the
running time of bubbleDown. However, we can get a tighter bound, O(n), if we
exploit the fact that most of the sequences that bubble down elements are very
short.

To begin, we did not even have to call bubbleDown on the second half of the
array, because all the elements there are leaves. On the second quarter of the array,
that is,

A[(n/4)+1..n/2]

we may call bubbleDown once, if the element is smaller than either of its children;
but those children are in the second half, and therefore are leaves. Thus, in the
second quarter of A, we call bubbleDown at most once. Similarly, in the second
eighth of the array, we call bubbleDown at most twice, and so on. The number of
calls to bubbleDown in the various regions of the array is indicated in Fig. 5.52.

A · · · ≤ 3 ≤ 2 ≤ 1 0

n/16 n/8 n/4 n/2 n

Fig. 5.52. The number of calls to bubbleDown decreases rapidly as we go through
the array from low to high indices.

Let us count the number of calls to bubbleDown made by heapify, including
recursive calls. From Fig. 5.52 we see that it is possible to divide A into zones,
where the ith zone consists of A[j] for j greater than n/2i+1 but no greater than
n/2i. The number of elements in zone i is thus n/2i+1, and there are at most i calls
to bubbleDown for each element in zone i. Further, the zones i > log2 n are empty,
since they contain at most n/21+log

2
n = 1/2 element. The element A[1] is the sole

occupant of zone log2 n. We thus need to compute the sum

log
2
n

∑

i=1

in/2i+1 (5.3)

We can provide an upper bound on the finite sum (5.3) by extending it to an infinite
sum and then pulling out the factor n/2:

SEC. 5.10 HEAPSORT: SORTING WITH BALANCED POTS 283

n

2

∞
∑

i=1

i/2i (5.4)

We must now get an upper bound on the sum in (5.4). This sum,
∑

∞

i=1 i/2
i,

can be written as

(1/2) + (1/4+ 1/4) + (1/8 + 1/8 + 1/8) + (1/16+ 1/16+ 1/16+ 1/16) + · · ·
We can write these inverse powers of 2 as the triangle shown in Fig. 5.53. Each row
is an infinite geometric series with ratio 1/2, which sums to twice the first term in
the series, as indicated at the right edge of Fig. 5.53. The row sums form another
geometric series, which sums to 2.

1/2 + 1/4 + 1/8 + 1/16 + · · · = 1
1/4 + 1/8 + 1/16 + · · · = 1/2

1/8 + 1/16 + · · · = 1/4
1/16 + · · · = 1/8

· · · = · · ·

Fig. 5.53. Arranging
∑

∞

i=1
i/2i as a triangular sum.

It follows that (5.4) is upper-bounded by (n/2)× 2 = n. That is, the number
of calls to bubbleDown in the function heapify is no greater than n. Since we have
already established that each call takes O(1) time, exclusive of any recursive calls,
we conclude that the total time taken by heapify is O(n).

The Complete Heapsort Algorithm

The C program for heapsort is shown in Fig. 5.54. It uses an array of integers
A[1..MAX] for the heap. The elements to be sorted are inserted in A[1..n]. The
definitions of the function declarations in Fig. 5.54 are contained in Sections 5.9
and 5.10.

Line (1) calls heapify, which turns the n elements to be sorted into a heap;
and line (2) initializes i, which marks the end of the heap, to n. The loop of
lines (3) and (4) applies deletemax n − 1 times. We should examine the code of
Fig. 5.49 again to observe that deletemax(A,i) swaps the maximum element of
the remaining heap — which is always in A[1] — with A[i]. As a side effect, i is
decremented by 1, so that the size of the heap shrinks by 1. The element “deleted”
by deletemax at line (4) is now part of the sorted tail of the array. It is less than
or equal to any element in the previous tail, A[i+1..n], but greater than or equal
to any element still in the heap. Thus, the claimed property is maintained; all the
heap elements precede all the elements of the tail.

Running Time of Heapsort

We have just established that heapify in line (1) takes time proportional to n. Line
(2) clearly takes O(1) time. Since i decreases by 1 each time around the loop of lines
(3) and (4), the number of times around the loop is n−1. The call to deletemax at
line (4) takes O(log n) time. Thus, the total time for the loop is O(n log n). That
time dominates lines (1) and (2), and so the running time of heapsort is O(n log n)
on n elements.

284 THE TREE DATA MODEL

#include <stdio.h>

#define MAX 100

int A[MAX+1];

void bubbleDown(int A[], int i, int n);

void deletemax(int A[], int *pn);

void heapify(int A[], int n);

void heapsort(int A[], int n);

void swap(int A[], int i, int j);

main()

{

int i, n, x;

n = 0;

while (n < MAX && scanf("%d", &x) != EOF)

A[++n] = x;

heapsort(A, n);

for (i = 1; i <= n; i++)

printf("%d\n", A[i]);

}

void heapsort(int A[], int n)

{

int i;

(1) heapify(A, n);

(2) i = n;

(3) while (i > 1)

(4) deletemax(A, &i);

}

Fig. 5.54. Heapsorting an array.

EXERCISES

5.10.1: Apply heapsort to the list of elements 3, 1, 4, 1, 5, 9, 2, 6, 5.

5.10.2*: Give an O(n) running time algorithm that finds the
√
n largest elements

in a list of n elements.

5.11 Summary of Chapter 5

The reader should take away the following points from Chapter 5:

Trees are an important data model for representing hierarchical information.

SEC. 5.12 BIBLIOGRAPHIC NOTES FOR CHAPTER 5 285

Many data structures involving combinations of arrays and pointers can be used
to implement trees, and the data structure of choice depends on the operations
performed on the tree.

Two of the most important representations for tree nodes are the leftmost-
child–right-sibling representation and the trie (array of pointers to children).

Recursive algorithms and proofs are well suited for trees. A variant of our
basic induction scheme, called structural induction, is effectively a complete
induction on the number of nodes in a tree.

The binary tree is a variant of the tree model in which each node has (optional)
left and right children.

A binary search tree is a labeled binary tree with the “binary search tree
property” that all the labels in the left subtree precede the label at a node, and
all labels in the right subtree follow the label at the node.

The dictionary abstract data type is a set upon which we can perform the oper-
ations insert, delete, and lookup. The binary search tree efficiently implements
dictionaries.

A priority queue is another abstract data type, a set upon which we can perform
the operations insert and deletemax.

A partially ordered tree is a labeled binary tree with the property that the
label at any node is at least as great as the label at its children.

Balanced partially ordered trees, where the nodes fully occupy levels from the
root to the lowest level, where only the leftmost positions are occupied, can be
implemented by an array structure called a heap. This structure provides an
O(log n) implementation of a priority queue and leads to an O(n log n) sorting
algorithm called heapsort.

5.12 Bibliographic Notes for Chapter 5

The trie representation of trees is from Fredkin [1960]. The binary search tree was
invented independently by a number of people, and the reader is referred to Knuth
[1973] for a history as well as a great deal more information on various kinds of
search trees. For more advanced applications of trees, see Tarjan [1983].

Williams [1964] devised the heap implementation of balanced partially ordered
trees. Floyd [1964] describes an efficient version of heapsort.

Floyd, R. W. [1964]. “Algorithm 245: Treesort 3,” Comm. ACM 7:12, pp. 701.

Fredkin, E. [1960]. “Trie memory,” Comm. ACM 3:4, pp. 490–500.

Knuth, D. E. [1973]. The Art of Computer Programming, Vol. III, Sorting and

Searching, 2nd ed., Addison-Wesley, Reading, Mass.

Tarjan, R. E. [1983]. Data Structures and Network Algorithms, SIAM Press,
Philadelphia.

Williams, J. W. J. [1964]. “Algorithm 232: Heapsort,” Comm. ACM 7:6, pp. 347–
348.

