CHAPTER

Abstraction

Exam
scheduling

Computer Science:
The Mechanization
of Abstraction

Though it is a new field, computer science already touches virtually every aspect
of human endeavor. Its impact on society is seen in the proliferation of computers,
information systems, text editors, spreadsheets, and all of the wonderful application
programs that have been developed to make computers easier to use and people more
productive. An important part of the field deals with how to make programming
easier and software more reliable. But fundamentally, computer science is a science
of abstraction — creating the right model for thinking about a problem and devising
the appropriate mechanizable techniques to solve it.

Every other science deals with the universe as it is. The physicist’s job, for
example, is to understand how the world works, not to invent a world in which
physical laws would be simpler or more pleasant to follow. Computer scientists,
on the other hand, must create abstractions of real-world problems that can be
understood by computer users and, at the same time, that can be represented and
manipulated inside a computer.

Sometimes the process of abstraction is simple. For example, we can model the
behavior of the electronic circuits used to build computers quite well by an abstrac-
tion called “propositional logic.” The modeling of circuits by logical expressions is
not exact; it simplifies, or abstracts away, many details — such as the time it takes
for electrons to flow through circuits and gates. Nevertheless, the propositional
logic model is good enough to help us design computer circuits well. We shall have
much more to say about propositional logic in Chapter 12.

As another example, suppose we are faced with the problem of scheduling final
examinations for courses. That is, we must assign course exams to time slots so
that two courses may have their exams scheduled in the same time slot only if there
is no student taking both. At first, it may not be apparent how we should model
this problem. One approach is to draw a circle called a node for each course and
draw a line called an edge connecting two nodes if the corresponding courses have
a student in common. Figure 1.1 suggests a possible picture for five courses; the
picture is called a course-conflict graph.

Given the course-conflict graph, we can solve the exam-scheduling problem by
repeatedly finding and removing “maximal independent sets” from the graph. An
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Eng Math

Fig. 1.1. Course-conflict graph for five courses. An edge between two
courses indicates that at least one student is taking both courses.

independent set is a collection of nodes that have no connecting edges within the
collection. An independent set is mazimal if no other node from the graph can be
added without including an edge between two nodes of the set. In terms of courses,
a maximal independent set is any maximal set of courses with no common students.
In Fig. 1.1, {Econ, Eng, Phy} is one maximal independent set. The set of courses
corresponding to the selected maximal independent set is assigned to the first time
slot.

We remove from the graph the nodes in the first maximal independent set,
along with all incident edges, and then find a maximal independent set among the
remaining courses. One choice for the next maximal independent set is the singleton
set {CS}. The course in this maximal independent set is assigned to the second
time slot.

We repeat this process of finding and deleting maximal independent sets until
no more nodes remain in the course-conflict graph. At this point, all courses will
have been assigned to time slots. In our example, after two iterations, the only
remaining node in the course-conflict graph is Math, and this forms the final maxi-
mal independent set, which is assigned to the third time slot. The resulting exam
schedule is thus

TIME SLOT | COURSE EXAMS

1 Econ, Eng, Phy
2 CcS
3 Math

This algorithm does not necessarily partition the courses among the smallest
possible number of time slots, but it is simple and does tend to produce a schedule
with close to the smallest number of time slots. It is also one that can be readily
programmed using the techniques presented in Chapter 9.

Notice that this approach abstracts away some details of the problem that may
be important. For example, it could cause one student to have five exams in five
consecutive time slots. We could create a model that included limits on how many
exams in a row one student could take, but then both the model and the solution
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Abstraction: Not to Be Feared

The reader may cringe at the word “abstraction,” because we all have the intu-
ition that abstract things are hard to understand; for example, abstract algebra
(the study of groups, rings, and the like) is generally considered harder than the
algebra we learned in high school. However, abstraction in the sense we use it im-
plies simplification, the replacement of a complex and detailed real-world situation
by an understandable model within which we can solve a problem. That is, we
“abstract away” the details whose effect on the solution to a problem is minimal
or nonexistent, thereby creating a model that lets us deal with the essence of the
problem.

to the exam-scheduling problem would be more complicated.

Often, finding a good abstraction can be quite difficult because we are forced
to confront the fundamental limitations on the tasks computers can perform and
the speed with which computers can perform those tasks. In the early days of com-
puter science, some optimists believed that robots would soon have the prodigious
capability and versatility of the Star Wars robot C3PO. Since then we have learned
that in order to have “intelligent” behavior on the part of a computer (or robot),
we need to provide that computer with a model of the world that is essentially
as detailed as that possessed by humans, including not only facts (“Sally’s phone
number is 555-1234"), but principles and relationships (“If you drop something, it
usually falls downward”).

We have made much progress on this problem of “knowledge representation.”
We have devised abstractions that can be used to help build programs that do
certain kinds of reasoning. One example of such an abstraction is the directed
graph, in which nodes represent entities (“the species cat” or “Fluffy”) and arrows
(called arcs) from one node to another represent relationships (“Fluffy is a cat,”
“cats are animals,” “Fluffy owns Fluffy’s milk saucer”); Figure 1.2 suggests such a
graph.

Another useful abstraction is formal logic, which allows us to manipulate facts
by applying rules of inference, such as “If X is a cat and Y is the mother of X, then
Y is a cat.” Nevertheless, progress on modeling, or abstracting, the real world or
significant pieces thereof remains a fundamental challenge of computer science, one
that is not likely to be solved completely in the near future.

What This Book Is About

This book will introduce the reader, who is assumed to have a working knowledge of
the programming language ANSI C, to the principal ideas and concerns of computer
science. The book emphasizes three important problem-solving tools:

1. Data models, the abstractions used to describe problems. We have already men-
tioned two models: logic and graphs. We shall meet many others throughout
this book.
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Fig. 1.2. A graph representing knowledge about Fluffy.

2. Data structures, the programming-language constructs used to represent data
models. For example, C provides built-in abstractions, such as structures and
pointers, that allow us to construct data structures to represent complex ab-
stractions such as graphs.

3. Algorithms, the techniques used to obtain solutions by manipulating data as
represented by the abstractions of a data model, by data structures, or by other
means.

Data Models

We meet data models in two contexts. Data models such as the graphs discussed in
the introduction to this chapter are abstractions frequently used to help formulate
solutions to problems. We shall learn about several such data models in this book:
trees in Chapter 5, lists in Chapter 6, sets in Chapter 7, relations in Chapter 8,
graphs in Chapter 9, finite automata in Chapter 10, grammars in Chapter 11, and
logic in Chapters 12 and 14.

Data models are also associated with programming languages and computers.
For example, C has a data model that includes abstractions such as characters,
integers of several sizes, and floating-point numbers. Integers and floating-point
numbers in C are only approximations of integers and reals in mathematics because
of the limited precision of arithmetic available in computers. The C data model also
includes types such as structures, pointers, and functions, which we shall discuss in
more detail in Section 1.4.

Data Structures

When the data model of the language in which we are writing a program lacks a
built-in representation for the data model of the problem at hand, we must represent
the needed data model using the abstractions supported by the language. For this
purpose, we study data structures, which are methods for representing in the data
model of a programming language abstractions that are not an explicit part of
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that language. Different programming languages may have strikingly different data
models. For example, unlike C, the language Lisp supports trees directly, and the
language Prolog has logic built into its data model.

Algorithms

An algorithm is a precise and unambiguous specification of a sequence of steps that
can be carried out mechanically. The notation in which an algorithm is expressed
can be any commonly understood language, but in computer science algorithms are
most often expressed formally as programs in a programming language, or in an
informal style as a sequence of programming language constructs intermingled with
English language statements. Most likely, you have already encountered several im-
portant algorithms while studying programming. For example, there are a number
of algorithms for sorting the elements of an array, that is, putting the elements in
smallest-first order. There are clever searching algorithms such as binary search,
which quickly finds a given element in a sorted array by repeatedly dividing in half
the portion of the array in which the element could appear.

These, and many other “tricks” for solving common problems, are among the
tools the computer scientist uses when designing programs. We shall study many
such techniques in this book, including the important methods for sorting and
searching. In addition, we shall learn what makes one algorithm better than another.
Frequently, the running time, or time taken by an algorithm measured as a function
of the size of its input, is one important aspect of the “quality” of the algorithm;
we discuss running time in Chapter 3.

Other aspects of algorithms are also important, particularly their simplicity.
Ideally, an algorithm should be easy to understand and easy to turn into a work-
ing program. Also, the resulting program should be understandable by a person
reading the code that implements the algorithm. Unfortunately, our desires for a
fast algorithm and a simple algorithm are often in conflict, and we must choose our
algorithm wisely.

Underlying Threads

As we progress through this book, we shall encounter a number of important uni-
fying principles. We alert the reader to two of these here:

1.  Design algebras. In certain fields in which the underlying models have become
well understood, we can develop notations in which design trade-offs can be
expressed and evaluated. Through this understanding, we can develop a theory
of design with which well-engineered systems can be constructed. Propositional
logic, with the associated notation called Boolean algebra that we encounter in
Chapter 12, is a good example of this kind of design algebra. With it, we can
design efficient circuits for subsystems of the kind found in digital computers.
Other examples of algebras found in this book are the algebra of sets in Chapter
7, the algebra of relations in Chapter 8, and the algebra of regular expressions
in Chapter 10.
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2. Recursion is such a useful technique for defining concepts and solving problems
that it deserves special mention. We discuss recursion in detail in Chapter 2
and use it throughout the rest of the book. Whenever we need to define an
object precisely or whenever we need to solve a problem, we should always ask,
“What does the recursive solution look like?” Frequently that solution has a
simplicity and efficiency that makes it the method of choice.

What This Chapter Is About

The remainder of this chapter sets the stage for the study of computer science. The
primary concepts that will be covered are

O Data models (Section 1.3)
O The data model of the programming language C (Section 1.4)
O The principal steps in the software-creation process (Section 1.5)

We shall give examples of several different ways in which abstractions and mod-
els appear in computer systems. In particular, we mention the models found in
programming languages, in certain kinds of systems programs, such as operating
systems, and in the circuits from which computers are built. Since software is a
vital component of today’s computer systems, we need to understand the software-
creation process, the role played by models and algorithms, and the aspects of
software creation that computer science can address only in limited ways.

In Section 1.6 there are some conventional definitions that are used in C pro-
grams throughout this book.

Data Models

Any mathematical concept can be termed a data model. In computer science, a
data model normally has two aspects:

1. The values that objects can assume. For example, many data models contain
objects that have integer values. This aspect of the data model is static; it tells
us what values objects may take. The static part of a programming language’s
data model is often called the type system.

2. The operations on the data. For example, we normally apply operations such
as addition to integers. This aspect of the model is dynamic; it tells us the
ways in which we can change values and create new values.

Programming Language Data Models

Each programming language has its own data model, and these differ from one
another, often in quite substantial ways. The basic principle under which most
programming languages deal with data is that each program has access to “boxes,”
which we can think of as regions of storage. Each box has a type, such as int or
char. We may store in a box any value of the correct type for that box. We often
refer to the values that can be stored in boxes as data objects.
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We may also name boxes. In general, a name for a box is any expression that
denotes that box. Often, we think of the names of boxes as the variables of the
program, but that is not quite right. For example, if x is a variable local to a
recursive function F', then there may be many boxes named x, each associated with
a different call to F'. Then the true name of such a box is a combination of x and
the particular call to F.

Most of the data types of C are familiar: integers, floating-point numbers,
characters, arrays, structures, and pointers. These are all static notions.

The operations permitted on data include the usual arithmetic operations on
integers and floating-point numbers, accessing operations for elements of arrays or
structures, and pointer dereferencing, that is, finding the element pointed to by a
pointer. These operations are part of the dynamics of the C data model.

In a programming course, we would see important data models that are not part
of C, such as lists, trees, and graphs. In mathematical terms, a list is a sequence of
n elements, which we shall write as (a1, az, ..., ay), where a; is the first element, as
the second, and so on. Operations on lists include inserting new elements, deleting
elements, and concatenating lists (that is, appending one list to the end of another).

Example 1.1. In C, a list of integers can be represented by a data structure
called a linked list in which list elements are stored in cells. Lists and their cells can
be defined by a type declaration such as

typedef struct CELL *LIST;
struct CELL {

int element;

LIST next;
};

This declaration defines a self-referential structure CELL with two fields. The first
is element, which holds the value of an element of the list and is of type int.

The second field of each CELL is next, which holds a pointer to a cell. Note
that the type LIST is really a pointer to a CELL. Thus, structures of type CELL can
be linked together by their next fields to form what we usually think of as a linked
list, as suggested in Fig. 1.3. The next field can be thought of as either a pointer
to the next cell or as representing the entire list that follows the cell in which it
appears. Similarly, the entire list can be represented by a pointer, of type LIST, to
the first cell on the list.

aq ®

Y

a *— — ap L]

Fig. 1.3. A linked list representing the list (a1, az2,...,an).

Cells are represented by rectangles, the left part of which is the element, and
the right part of which holds a pointer, shown as an arrow to the next cell pointed
to. A dot in the box holding a pointer means that the pointer is NULL.! Lists will
be covered in more detail in Chapter 6. [

1 NULL is a symbolic constant defined in the standard header file stdio.h to be equal to a value
that cannot be a pointer to anything. We shall use it to have this meaning throughout the
book.
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Data Models Versus Data Structures

Despite their similar names, a “list” and a “linked list” are very different concepts. A
list is a mathematical abstraction, or data model. A linked list is a data structure. In
particular, it is the data structure we normally use in C and many similar languages
to represent abstract lists in programs. There are other languages in which it is
not necessary to use a data structure to represent abstract lists. For example, the
list (a1,as,...,a,) could be represented directly in the language Lisp and in the
language Prolog similarly, as [a1, ag, ..., ap).

Data Models of System Software

Data models are found not only in programming languages but also in operating
systems and applications programs. You are probably familiar with an operating
system such as UNIX or MS-DOS (perhaps with Microsoft Windows).? The func-
tion of an operating system is to manage and schedule the resources of a computer.
The data model for an operating system like UNIX has concepts such as files, di-

rectories, and processes.

al a2 a3 b1l b2

Fig. 1.4. A typical UNIX directory/file structure.

1. The data itself is stored in files, which in the UNIX system are strings of
characters.

2. Files are organized into directories, which are collections of files and/or other
directories. The directories and files form a tree with the files at the leaves.3
Figure 1.4 suggests the tree that might represent the directory structure of a
typical UNIX operating system. Directories are indicated by circles. The root
directory / contains directories called mnt, usr, bin, and so on. The directory
/usr contains directories ann and bob; directory ann contains three files: ail,
a2, and a3.

If you are unfamiliar with operating systems, you can skip the next paragraphs. However,
most readers have probably encountered an operating system, perhaps under another name.
For example, the Macintosh “system” is an operating system, although different terminology
is used. For example, a directory becomes a “folder” in Macintosh-ese.

However, “links” in directories may make it appear that a file or directory is part of several
different directories.
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3. Processes are individual executions of programs. Processes take zero or more
streams as input and produce zero or more streams as output. In the UNIX
system, processes can be combined by pipes, where the output from one process
is fed as input into the next process. The resulting composition of processes
can be viewed as a single process with its own input and output.

Example 1.2. Consider the UNIX command line
bc | word | speak

The symbol | indicates a pipe, an operation that makes the output of the process
on the left of this symbol be the input to the process on its right. The program
bc is a desk calculator that takes arithmetic expressions, such as 2 + 3, as input
and produces the answer 5 as output. The program word translates numbers into
words; speak translates words into phoneme sequences, which are then uttered over
a loudspeaker by a voice synthesizer. Connecting these three programs together
by pipes turns this UNIX command line into a single process that behaves like a
“talking” desk calculator. It takes as input arithmetic expressions and produces as
output the spoken answers. This example also suggests that a complex task may
be implemented more easily as the composition of several simpler functions. [

There are many other aspects to an operating system, such as how it manages
security of data and interaction with the user. However, even these few observations
should make it apparent that the data model of an operating system is rather
different from the data model of a programming language.

Another type of data model is found in text editors. Every text editor’s data
model incorporates a notion of text strings and editing operations on text. The
data model usually includes the notion of lines, which, like most files, are character
strings. However, unlike files, lines may have associated line numbers. Lines may
also be organized into larger units such as paragraphs, and operations on lines are
normally applicable anywhere within the line — not just at the front, like the most
common file operations. The typical editor supports a notion of a “current” line
(where the cursor is) and probably a current position within that line. Operations
performed by the editor include various modifications to lines, such as deletion or
insertion of characters within the line, deletion of lines, and creation of new lines.
It is also possible in typical editors to search for features, such as specific character
strings, among the lines of the file being edited.

In fact, if you examine any other familiar piece of software, such as a spread-
sheet or a video game, a pattern emerges. Each program that is designed to be
used by others has its own data model, within which the user must work. The
data models we meet are often radically different from one another, both in the
primitives they use to represent data and in the operations on that data that are
offered to the user. Yet each data model is implemented, via data structures and
the programs that use them, in some programming language.

The Data Model of Circuits

We shall also meet in this book a data model for computer circuits. This model,
called propositional logic, is most useful in the design of computers. Computers
are composed of elementary components called gates. Fach gate has one or more
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inputs and one output; the value of an input or output can be only 0 or 1. A
gate performs a simple function — such as AND, where the output is 1 if all the
inputs are 1 and the output is 0 if one or more of the inputs are 0. At one level
of abstraction, computer design is the process of deciding how to connect gates
to perform the basic operations of a computer. There are many other levels of
abstraction associated with computer design as well.

Figure 1.5 shows the usual symbol for an AND-gate, together with its truth table,
which indicates the output value of the gate for each pair of input values.* We
discuss truth tables in Chapter 12 and gates and their interconnections in Chapter
13.

AND Z

Y
0
1
0
1

Fig. 1.5. An AND-gate and its truth table.

Example 1.3. To execute the C assignment statement a = b+c, a computer
performs the addition with an adder circuit. In the computer, all numbers are
represented in binary notation using the two digits 0 and 1 (called binary digits, or
bits for short). The familiar algorithm for adding decimal numbers, where we add
the digits at the right end, generate a carry to the next place to the left, add that
carry and the digits at that place, generate a carry to the next place to the left,
and so on, works in binary as well.

Fig. 1.6. A one-bit adder: dz is the sum =z +y + c.

Out of a few gates, we can build a one-bit adder circuit, as suggested in Fig.
1.6. Two input bits,  and y, and a carry-in bit ¢, are summed, resulting in a sum
bit z and a carry-out bit d. To be precise, d is 1 if two or more of ¢, x, and y are 1,
while z is 1 if an odd number (one or three) of ¢, x, and y are 1, as suggested by

4 Note that if we think of 1 as “true” and 0 as “false,” then the AND-gate performs the same
logical operation as the && operator of C.
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Fig. 1.7. Truth table for the one-bit adder.

The Ripple-Carry Addition Algorithm

We all have used the ripple-carry algorithm to add numbers in decimal. To add
456 4 829, for example, one performs the steps suggested below:

1 0
4 5 6 4 5 6 4 5 6
8 2 9 8 2 9 8 29
5 8 5 1285

That is, at the first step, we add the rightmost digits, 6+9 = 15. We write down the
5 and carry the 1 to the second column. At the second step, we add the carry-in, 1,
and the two digits in the second place from the right, to get 1+5+2 = 8. We write
down the 8, and the carry is 0. In the third step, we add the carry-in, 0, and the
digits in the third place from the right, to get 0 + 4 4+ 8 = 12. We write down the
2, but since we are at the leftmost place, we do not carry the 1, but rather write it
down as the leftmost digit of the answer.

Binary ripple-carry addition works the same way. However, at each place, the
carry and the “digits” being added are all either 0 or 1. The one-bit adder thus
describes completely the addition table for a single place. That is, if all three bits
are 0, then the sum is 0, and so we write down 0 and carry 0. If one of the three is
1, the sum is 1; we write down 1 and carry 0. If two of the three are 1, the sum is
2, or 10 in binary; we write down 0 and carry 1. If all three are 1, then the sum is
3, or 11 in binary, and so we write down 1 and carry 1. For example, to add 101 to
111 using binary ripple-carry addition, the steps are

1 1
1 01 1 01 101
1 11 1 11 111
0 00 1100

the table of Fig. 1.7. The carry-out bit followed by the sum bit — that is, dz —
forms a two-bit binary number, which is the total number of z, y, and ¢ that are 1.
In this sense, the one-bit adder adds its inputs.

Many computers represent integers as 32-bit numbers. An adder circuit can
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then be composed of 32 one-bit adders, as suggested in Fig. 1.8. This circuit is often
called a ripple-carry adder, because the carry ripples from right to left, one bit at a
time. Note that the carry into the rightmost (low-order bit) one-bit adder is always
0. The sequence of bits x31z30 - - xo represents the bits of the first number being
added, and y31¥y30 - - - Yo is the second addend. The sum is dzs1230 - - - 20; that is, the
leading bit is the carry-out of the leftmost one-bit adder, and the following bits of
the sum are the sum bits of the adders, from the left.

31 T30 Zo
Y31 Y30 Yo

' ' '

d <e—] a— 0

T
T

<31 <30 20

Fig. 1.8. A ripple-carry adder: dzs1230---20 = 31230 - - To + Y31Y30 - - - Yo.

The circuit of Fig. 1.8 is really an algorithm in the data model of bits and the
primitive operations of gates. However, it is not a particularly good algorithm. The
reason is that until we compute the carry-out of the rightmost place, we cannot
compute z7 or the carry-out of the second place. Until we compute the carry-out of
the second place, we cannot compute z5 or the carry-out of the third place, and so
on. Thus, the time taken by the circuit is the length of the numbers being added —
32 in our case — multiplied by the time needed by a one-bit adder.

One might suspect that the need to “ripple” the carry through each of the one-
bit adders, in turn, is inherent in the definition of addition. Thus, it may come as
a surprise to the reader that computers have a much faster way of adding numbers.
We shall cover such an improved algorithm for addition when we discuss the design
of circuits in Chapter 13. O

EXERCISES

1.3.1: Explain the difference between the static and dynamic aspects of a data
model.

1.3.2: Describe the data model of your favorite video game. Distinguish between
static and dynamic aspects of the model. Hint: The static parts are not just the
parts of the game board that do not move. For example, in Pac Man, the static
part includes not only the map, but the “power pills,” “monsters,” and so on.

1.3.3: Describe the data model of your favorite text editor.
1.3.4: Describe the data model of a spreadsheet program.
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The C Data Model
In this section we shall highlight important parts of the data model used by the C

programming language. As an example of a C program, consider the program in
Fig. 1.10 that uses the variable num to count the number of characters in its input.

#include <stdio.h>

main()

{
int num;
num = 0;

while (getchar() != EOF)
++num; /* add 1 to num */
printf ("%d\n", num);

Fig. 1.10. C program to count number of input characters.

The first line tells the C preprocessor to include as part of the source the
standard input/output file stdio.h, which contains the definitions of the functions
getchar and printf, and the symbolic constant EOF, a value that represents the
end of a file.

A C program itself consists of a sequence of definitions, which can be either
function definitions or data definitions. One must be a definition of a function
called main. The first statement in the function body of the program in Fig. 1.10
declares the variable num to be of type int. (All variables in a C program must
be declared before their use.) The next statement initializes num to zero. The
following while statement reads input characters one at a time using the library
function getchar, incrementing num after each character read, until there are no
more input characters. The end of file is signaled by the special value EOF on the
input. The printf statement prints the value of num as a decimal integer, followed
by a newline character.

The C Type System

We begin with the static part of the C data model, the type system, which describes
the values that data may have. We then discuss the dynamics of the C data model,
that is, the operations that may be performed on data.

In C, there is an infinite set of types, any of which could be the type associated
with a particular variable. These types, and the rules by which they are constructed,
form the type system of C. The type system contains basic types such as integers,
and a collection of type-formation rules with which we can construct progressively
more complex types from types we already know. The basic types of C are

1. Characters (char, signed char, unsigned char)

2. Integers (int, short int, long int, unsigned)

3. Floating-point numbers (float, double, long double)
4

Enumerations (enum)
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Integers and floating-point numbers are considered to be arithmetic types.

The type-formation rules assume that we already have some types, which could

be basic types or other types that we have already constructed using these rules.
Here are some examples of the type formation rules in C:

1.

Array types. We can form an array whose elements are type T with the decla-
ration

T Aln]

This statement declares an array A of n elements, each of type T. In C, array
subscripts begin at 0, so the first element is A[0] and the last element is
A[n—1]. Arrays can be constructed from characters, arithmetic types, pointers,
structures, unions, or other arrays.

Structure types. In C, a structure is a grouping of variables called members or
fields. Within a structure different members can have different types, but each

member must have elements of a single type. If 11,75,...,T, are types and
My, Ms, ..., M, are member names, then the declaration
struct S {
Ty My;
Ty Mo;
T My,;
¥

defines a structure whose tag (i.e., the name of its type) is S and that has
n members. The ith member has the name M; and a value of type T;, for
i =1,2,...,n. Example 1.1 is an illustration of a structure. This structure
has tag CELL and two members. The first member has name element and has
integer type. The second has name next and its type is a pointer to a structure
of the same type.

The structure tag S is optional, but it provides a convenient shorthand for
referring to the type in later declarations. For example, the declaration

struct S myRecord;
defines the variable myRecord to be a structure of type S.

Union types. A union type allows a variable to have different types at different
times during the execution of a program. The declaration

union {
Ty M;y;
Ty My;

T, My;
}ox;

defines a variable x that can hold a value of any of the types T1,75,...,Ty.
The member names My, M, ..., M, help indicate which type the value of x
should be regarded as being. That is, x. M; refers to the value of x treated as
a value of type T;.
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Pointer types. C is distinctive for its reliance on pointers. A variable of type
pointer contains the address of a region of storage. We can access the value of
another variable indirectly through a pointer. The declaration

T *p;

defines the variable p to be a pointer to a variable of type 7. Thus p names a
box of type pointer to T" and the value in box p is a pointer. We often draw the
value of p as an arrow, rather than as an object of type T itself, as shown in
Fig. 1.11. What really appears in the box named p is the address, or location,
at which an object of type T is stored in the computer.

Consider the declaration
int x, *p;

In C, the unary operator & is used to obtain the address of an object, so the
statement

p = &x;
assigns the address of x to p; that is, it makes p point to x.

The unary operator * applied to p fetches the value of the box pointed to by
p, so the statement

y = *p;
assigns to y the contents of whatever box p points to. If y is a variable of type
int, then

p = &x;

y = *p;

is equivalent to the assignment

y =%

Object of
type T

Fig. 1.11. Variable p is of type pointer to T

Example 1.4. C has the typedef construct to create synonyms for type names.
The declaration

typedef int Distance;
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typedef int typel[10];
typedef typel *type2;

typedef struct {
int fieldl;
type2 field2;
} type3;

typedef type3 type4[5];

Fig. 1.12. Some C typedef declarations.

fieldl |3

field2 | e

(a) (b) (c)

fieldl |3 /—
0 I
field2 |e- ]
1 ]
2
3 ]
fieldl |7 ]
4 ]
field2 |e- ]

(d)

Fig. 1.13. Visualization of type declarations in Fig. 1.12.
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Types, Names, Variables, and Identifiers

A number of terms associated with data objects have different meanings but are
easy to confuse. First, a type describes a “shape” for data objects. In C, a new
name T may be defined for an existing type using the typedef construct

typedef <type descriptor> T

Here the type descriptor is an expression that tells us the shape of objects of the
type T.

A typedef declaration for T' does not actually create any objects of that type.
An object of type T is created by a declaration of the form

T x;

Here, x is an identifier, or “variable name.” Possibly, x is static (not local to any
function), in which case the box for x is created when the program starts. If x is
not static, then it is local to some function F'. When F is called, a box whose name
is “the x associated with this call to F” is created. More precisely, the name of the
box is x, but only uses of the identifier x during the execution of this call to F' refer
to this box.

As mentioned in the text, there can be many boxes each of whose name involves
the identifier x, since F' may be recursive. There may even be other functions that
also have used identifier x to name one of their variables. Moreover, names are
more general than identifiers, since there are many kinds of expressions that could
be used to name boxes. For instance, we mentioned that *p could be the name of
an object pointed to by pointer p, and other names could be complex expressions
such as (xp) .f[2] or p—>f[2]. The last two expressions are equivalent and refer
to the array element number 2 of the field £ of the structure pointed to by pointer

P

allows the name Distance to be used in place of the type int.

Consider the four typedef declarations in Fig. 1.12. In the conventional view
of data in C, an object of type typel is an array with 10 slots, each holding an
integer, as suggested in Fig. 1.13(a). Likewise, objects of type type2 are pointers to
such arrays, as in Fig. 1.13(b). Structures, like those of type3, are visualized as in
Fig. 1.13(c), with a slot for each field; note that the name of the field (e.g., field1)
does not actually appear with the value of the field. Finally, objects of the array
type type4 would have five slots, each of which holds an object of type type3, a
structure we suggest in Fig. 1.13(d). O

Functions

Functions also have associated types, even though we do not associate boxes or
“values” with functions, as we do with program variables. For any list of types
Ty,Ts,...,T,, we can define a function with n parameters consisting of those types,
in order. This list of types followed by the type of the value returned by the function
(the return-value) is the “type” of the function. If the function has no return value,
its type is void.

In general, we can build types by applying the type-construction rules arbi-
trarily, but there are a number of constraints. For example, we cannot construct an
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“array of functions,” although we can construct an array of pointers to functions.
The complete set of rules for constructing types in C can be found in the ANSI
standard.

Operations in the C Data Model

The operations on data in the C data model can be divided into three categories:

1. Operations that create or destroy a data object.
2. Operations that access and modify parts of a data object.

3. Operations that combine the values of data objects to form a new value for a
data object.

Data Object Creation and Disposal

For data creation, C provides several rudimentary mechanisms. When a function is
called, boxes for each of its local arguments (parameters) are created; these serve
to hold the values of the arguments.

Another mechanism for data creation is through the use of the library routine
malloc(n), which returns a pointer to n consecutive character positions of unused
storage that can be used to store data by the caller of malloc. Data objects can
then be created in this storage region.

C has the analogous methods for destroying data objects. Local parameters of
a function call cease to exist when the function returns. The routine free releases
the storage created by malloc. In particular, the effect of calling free(p) is to
release the storage area pointed to by p. It is disastrous to use free to get rid of
an object that was not created by calling malloc.

Data Access and Modification

C has mechanisms for accessing the components of objects. It uses a[i] to access
the ith element of array a, x.m to access member m of a structure named x, and *p
to access the object pointed to by pointer p.

Modifying, or writing, values in C is done principally by the assignment oper-
ators, which allow us to change the value of an object.

Example 1.5. If a is a variable of type type4 defined in Example 1.4, then
(¥a[0] .field2) [3] = 99;

assigns the value 99 to the fourth element of the array pointed to by field2 in the

structure that is the first element of the array a. 0

Data Combination

C has a rich set of operators for manipulating and combining values. The principal
operators are

1.  Arithmetic operators. C provides:
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The customary binary arithmetic operators +, —, %, / on integers and
floating-point numbers. Integer division truncates (4/3 yields 1).

There are the unary + and — operators.

The modulus operator i % j produces the remainder when i is divided
by j.

The increment and decrement operators, ++ and --, applied to a single
integer variable add or subtract 1 from that variable, respectively. These
operators can appear before or after their operand, depending on whether
we wish the value of the expression to be computed before or after the
change in the variable’s value.

Logical operators. C does not have a Boolean type; it uses zero to represent
the logical value false, and nonzero to represent true.® C uses:

a)

&& to represent AND. For example, the expression x && y returns 1 if both
operands are nonzero, 0 otherwise. However, y is not evaluated if x has
the value 0.

|| represents OR. The expression x || y returns 1 if either x or y is
nonzero, and returns 0 otherwise. However, y is not evaluated if x is
nonzero.

The unary negation operator !'x returns 0 if x is nonzero and returns 1 if
z = 0.

The conditional operator is a ternary (3-argument) operator represented
by a question mark and a colon. The expression x?y:z returns the value
of y if x is true (i.e., it is nonzero) and returns the value of z if x is false
(i.e., 0).

Comparison operators. The result of applying one of the six relational compar-
ison operators (==, !=, <, >, <=, and >=) to integers or floating point numbers
is 0 if the relation is false and 1 otherwise.

Bitwise manipulation operators. C provides several useful bitwise logical op-
erators, which treat integers as if they were bits strings equal to their binary
representations. These include & for bitwise AND, | for bitwise inclusive-or, ~ for
bitwise exclusive-or, << for left shift, >> for right shift, and a tilde for negation.

Assignment operators. C uses = as the assignment operator. In addition, C
allows expressions such as

X=x+7Y;

to be written in a shortened form

X +=y;

Similar forms apply to the other binary arithmetic operators.

We shall use TRUE and FALSE as defined constants 1 and 0, respectively, to represent Boolean
values; see Section 1.6.
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6. Coercion operators. Coercion is the process of converting a value of one type
into an equivalent value of another type. For example, if x is a floating-point
number and i is an integer, then x = i causes the integer value of i to be
converted to a floating-point number with the same value. Here, the coercion
operator is not shown explicitly, but the C compiler can deduce that conversion
from integer to float is necessary and inserts the required step.

EXERCISES

1.4.1: Explain the difference between an identifier of a C program and a name (for
a “box” or data object).

1.4.2: Give an example of a C data object that has more than one name.

1.4.3: If you are familiar with another programming language besides C, describe
its type system and operations.

Algorithms and the Design of Programs

The study of data models, their properties, and their appropriate use is one pillar of
computer science. A second, equally important pillar is the study of algorithms and
their associated data structures. We need to know the best ways to perform common
tasks, and we need to learn the principal techniques for designing good algorithms.
Further, we need to understand how the use of data structures and algorithms fits
into the process of creating useful programs. The themes of data models, algorithms,
data structures, and their implementation in programs are interdependent, and each
appears many times throughout the book. In this section, we shall mention some
generalities regarding the design and implementation of programs.

The Creation of Software

In a programming class, when you were given a programming problem, you probably
designed an algorithm to solve the problem, implemented the algorithm in some
language, compiled and ran the program on some sample data, and then submitted
the program to be graded.

In a commercial setting, programs are written under rather different circum-
stances. Algorithms, at least those simple enough and common enough to have
names, are usually small parts of a complete program. Programs, in turn, are usu-
ally components of a larger system, involving hardware as well as software. Both
the programs and the complete systems in which they are embedded are developed
by teams of programmers and engineers; there could be hundreds of people on such
a team.

The development of a software system typically spans several phases. Although
these phases may superficially bear some resemblance to the steps involved in solving
the classroom programming assignment, most of the effort in building a software
system to solve a given problem is not concerned with programming. Here is an
idealized scenario.
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Problem definition and specification. The hardest, but most important, part of
the task of creating a software system is defining what the problem really is and
then specifying what is needed to solve it. Usually, problem definition begins by
analyzing the users’ requirements, but these requirements are often imprecise and
hard to write down. The system architect may have to consult with the future users
of the system and iterate the specification, until both the specifier and the users
are satisfied that the specification defines and solves the problem at hand. In the
specification stage, it may be helpful to build a simple prototype or model of the
final system, to gain insight into its behavior and intended use. Data modeling is
also an important tool in the problem-definition phase.

Design. Once the specification is complete, a high-level design of the system is
created, with the major components identified. A document outlining the high-level
design is prepared, and performance requirements for the system may be included.
More detailed specifications of some of the major components may also be included
during this phase. A cost-effective design often calls for the reuse or modification of
previously constructed components. Various software methodologies such as object-
oriented technology facilitate the reuse of components.

Implementation. Once the design is fixed, implementation of the components can
proceed. Many of the algorithms discussed in this book are useful in the implemen-
tation of new components. Once a component has been implemented, it is subject
to a series of tests to make sure that it behaves as specified.

Integration and system testing. When the components have been implemented and
individually tested, the entire system is assembled and tested.

Installation and field testing. Once the developer is satisfied that the system
will work to the customer’s satisfaction, the system is installed on the customer’s
premises and the final field testing takes place.

Maintenance. At this point, we might think that the bulk of the work has been
done. Maintenance remains, however, and in many situations maintenance can
account for more than half the cost of system development. Maintenance may
involve modifying components to eliminate unforeseen side-effects, to correct or
improve system performance, or to add features. Because maintenance is such an
important part of software systems design, it is important to write programs that
are correct, rugged, efficient, modifiable, and — whenever possible — portable from
one computer to another.

It is very important to catch errors as early as possible, preferably during the
problem-definition phase. At each successive phase, the cost of fixing a design error
or programming bug rises greatly. Independent reviews of requirements and designs
are beneficial in reducing downstream errors.

Programming Style

An individual programmer can ease the maintenance burden greatly by writing
programs that others can read and modify readily. Good programming style comes
only with practice, and we recommend that you begin at once to try writing pro-
grams that are easy for others to understand. There is no magic formula that will
guarantee readable programs, but there are several useful rules of thumb:
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Modularize a program into coherent pieces.
Lay out a program so that its structure is clear.

Write intelligent comments to explain a program. Describe, clearly and pre-
cisely, the underlying data models, the data structures selected to represent
them, and the operation performed by each procedure. When describing a pro-
cedure, state the assumptions made about its inputs, and tell how the output
relates to the input.

Use meaningful names for procedures and variables.

Avoid explicit constants whenever possible. For example, do not use 7 for the
number of dwarfs. Rather, use a defined constant such as NumberOfDwarfs, so
that you can easily change all uses of this constant to 8, if you decide to add
another dwarf.

Avoid the use of “global variables” — that is, variables defined for the program
as a whole — unless the data represented by that variable really is used by most
of the procedures of the program.

Another good programming practice is to maintain a test suite of inputs that

will try to exercise every line of code while you are developing a program. Whenever
new features are added to the program, the test suite can be run to make sure that
the new program has the same behavior as the old on previously working inputs.

Some C Conventions Used Throughout the Book

There are several definitions and conventions that we shall find useful as we illustrate
concepts with C programs. Some of these are common conventions found in the
standard header file stdio.h, while others are defined specially for the purposes of
this book and must be included with any C program that uses them.

1.

The identifier NULL is a value that may appear anywhere a pointer can appear,
but it is not a value that can ever point to anything. Thus, NULL in a field such
as next in the cells of Example 1.1 can be used to indicate the end of a list.
We shall see that NULL has a number of similar uses in other data structures.
NULL is properly defined in stdio.h.

The identifiers TRUE and FALSE are defined by

#define TRUE 1
#define FALSE O

Thus, TRUE can be used anywhere a condition with logical value true is wanted,
and FALSE can be used for a condition whose value is false.

The type BOOLEAN is defined as
typedef int BOOLEAN;

We use BOOLEAN whenever we want to stress the fact that we are interested in
the logical rather than the numeric value of an expression.
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EOF 4. The identifier EOF is a value that is returned by file-reading functions such as
getchar() when there are no more bytes left to be read from the file. An
appropriate value for EOF is provided in stdio.h.

5. We shall define a macro that generates declarations of cells of the kind used
Cell definition in Example 1.1. An appropriate definition appears in Fig. 1.14. It declares
cells with two fields: an element field whose type is given by the parameter
EltType and a next field to point to a cell with this structure. The macro
provides two external definitions: CellType is the name of structures of this
type, and ListType is a name for the type of pointers to these cells.

#define DefCell(EltType, CellType, ListType)
typedef struct CellType *ListType;
struct CellType {

EltType element;

ListType next;

P

Fig. 1.14. A macro for defining list cells.

a Example 1.6. We can define cells of the type used in Example 1.1 by the macro
use

DefCell(int, CELL, LIST);

The macro then expands into

typedef struct CELL *LIST;
struct CELL {

int element;

LIST next;
}

As a consequence, we can use CELL as the type of integer cells, and we can use LIST
as the type of pointers to these cells. For example,

CELL c;
LIST L;

defines ¢ to be a cell and L to be a pointer to a cell. Note that the representation
of a list of cells is normally a pointer to the first cell on the list, or NULL if the list
is empty. U

DED 1.7 Summary of Chapter 1

At this point you should be aware of the following concepts:

0 How data models, data structures, and algorithms are used to solve problems
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[0 The distinction between a list as a data model and a linked list as a data
structure

0 The presence of some kind of data model in every software system, be it a
programming language, an operating system, or an application program

O The key elements of the data model supported by the programming language
C

0 The major steps in the development of a large software system
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