CS145 Lecture Notes #14 Lossless Decomposition, 3NF, 4NF

Lossless Decomposition

Recall that we learned how to "normalize" relations (i.e., put them in BCNF) by decomposing their schemas into two or more sets of attributes

Example: Enroll(student, class, TA)

- In any given class, each student is assigned to exactly one TA
- One TA can assist only one class

Recall that a relation R is in BCNF if for every nontrivial FD $X \to Y$ in R, X is a superkey

- $X \to Y$ is a *BCNF violation* if it is nontrivial and X does not contain any key of R
- Based on a BCNF violation $X \to Y$, decompose R into two relations:
 - One with $X \cup Y$ as its attributes (i.e., everything in the FD)
 - One with $X \cup (attrs(R) X Y)$ as its attributes (i.e., left side of FD plus everything not in the FD)

Example: turn Enroll into BCNF

- BCNF violation:
- Decomposed relations:

What does this decomposition "work"? Why can't we just tear sets of attributes apart as we like?

- → The decomposed relations need to represent the same information as the original
- → We must be able to reconstruct the original from the decomposed relations

Formally: suppose R is decomposed into S and T

- $attrs(R) = attrs(S) \cup attrs(T)$
- $S = \pi_{attrs(S)}(R), T = \pi_{attrs(T)}(R)$
- \bullet The decomposition is $\mathit{lossless}$ if we can guarantee $R = S \bowtie T$

Example of lossless decomposition: BCNF decomposition for Enroll

Example of lossy decomposition: what if a TA may assist multiple classes?

- \rightarrow The join returns more tuples than the original relation
- "Lossy" refers not to the loss of tuples, but to the loss of information (the ability to distinguish different states of the original relation)
- → FD is what makes a decomposition lossless!

Theorem: Suppose we decompose a relation with schema XYZ into XY and XZ and project the relation for XYZ onto XY and XZ; then, $XY \bowtie XZ$ is guaranteed to reconstruct XYZ if either $X \to Y$ or $X \to Z$ holds *Proof*:

- Anything we project always comes back in the join
 - Sure; and it does not depend on FD's

• Anything that comes back in the join was in the original relation

On the other hand, if neither $X \to Y$ nor $X \to Z$ holds, then we could find a counterexample where the join returns too much:

2

3NF

One FD structure causes problems:

- If we decompose, we cannot check all FD's in decomposed relations
- If we don't decompose, we violate BCNF

Example: Enroll(student, class, TA)

- FD's: student class \rightarrow TA and TA \rightarrow class
- BCNF decomposition:
 - Assist(TA, class) and Assign(TA, student)
- Cannot check student class \rightarrow TA without joining decomposed relations back together

"Elegant" solution: define the problem away!

R is in Third Normal Form (3NF) if for every nontrivial FD $X \to A$, either

- X is superkey of R, or
- \bullet A is a member of at least one key of R

Tradeoff:

- We can check all FD's in the decomposed relation
- But now we might have redundancy due to FD's

Example: Enroll(student, class, TA) is in 3NF, but not in BCNF

Lossless & Dependency-Preserving Decomposition into 3NF

The "obvious" approach of doing a BCNF decomposition, but stopping when a relation schema is in 3NF, does not always work—it might still allow some FD's to get lost

- \sim 3NF decomposition algorithm:
 - Given: a relation R and a basis \mathcal{F} for the FD's that hold in R
 - 1. Find \mathcal{F}_c , a canonical cover for \mathcal{F}
 - 2. For each FD $X \to Y$ in \mathcal{F}_c , create a relation with schema XY
 - 3. Eliminate a relation if its schema is a subset of another
 - 4. If none of the schemas created so far contains a key of R, add a relation schema containing a key of R

A *canonical cover* \mathcal{F}_c for \mathcal{F} is a set of FD's with the following 4 properties:

- (a) \mathcal{F}_c is equivalent to \mathcal{F}
 - $-\mathcal{F}$ logically implies all FD's in \mathcal{F}_c and vice versa
- (b) No FD in \mathcal{F}_c is redundant, i.e., \mathcal{F}_c is a minimal basis
 - If we remove any FD from \mathcal{F}_c , the set of remaining FD's will no longer be equivalent to \mathcal{F}_c

- (c) No FD in \mathcal{F}_c contains redundant attributes
 - For any FD $X \to Y$ in \mathcal{F}_c , if we remove an attribute from either X or Y, the result FD together with the other FD's in \mathcal{F}_c will no longer be equivalent to \mathcal{F}_c
- (d) No two FD's in \mathcal{F}_c have same left sides
 - $-\mathcal{F}_c$ cannot contain $X \to Y$ and $X \to Z$ as separate FD's; they should have been combined into $X \to YZ$

Example: R(A, B, C, D, E)

$$\mathcal{F} = \{A \to BC, B \to C, A \to B, AB \to C, BD \to A\}$$

1. Find a canonical cover \mathcal{F}_c

Repeat until no change:

- · Remove redundant FD's
- · Remove redundant attributes from FD's
- · Combine FD's with common left sides

- 2. Create a relation for each FD in \mathcal{F}_c
- 3. Eliminate a relation if its schema is a subset of another
- 4. If no schema contains a key of R, add one containing a key of R First, what are the keys of R?
- \rightarrow Final answer:

4NF

BCNF does not eliminate all redundancies

Example: Student(SID, class, club)

- No nontrivial FD's; Student is in BCNF
- Suppose your classes have nothing to do with the clubs you join
- → Still contains tons of redundancies!

→ Often comes up when converting from an ODL design

Multivalued Dependencies

The multivalued dependency (MVD) $X \to Y$ holds in a relation R if whenever we have two tuples of R that agree on all attributes of X, then we can swap their Y components and get two new tuples that are also in R

Example: in Student, SID → class

- → This property must hold for all pairs of tuples that agree on SID, not just one pair
- → Intuitively, given SID, class and club are "independent"

Trivial and nontrivial MVD's:

- Trivial: X woheadrightarrow Y where Y is a subset of X or $X \cup Y$ contains all attributes of the relation
- Nontrivial: X woheadrightarrow Y where Y is not a subset of X and $X \cup Y$ does not contain all attributes of the relation

MVD rules:

- FD is MVD: If $X \to Y$ holds in R, then $X \to Y$ also holds in R
 - Because if $X \to Y$, then swapping Y's between tuples that agree on X will not create any new tuples
- Complementation: If X woheadrightarrow Y in R, then X woheadrightarrow attrs(R) X Y also holds in R
 - Intuitively, if X is given, Y and the rest of the attributes in R are "independent"

Sound and complete set of axioms for inferring FD's and MVD's (for your reference only):

- FD reflexivity: if $Y \subseteq X$, then $X \to Y$
- FD augmentation: if $X \to Y$, then $XZ \to YZ$
- FD transitivity: if $X \to Y$ and $Y \to Z$, then $X \to Z$
- MVD complementation: if $X \rightarrow Y$ in R, then $X \rightarrow attrs(R) X Y$
- MVD augmentation: if $X \to Y$ and $V \subseteq W$, then $XW \to YV$
- MVD transitivity: if $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow (Z Y)$
- Replication: if $X \to Y$, then $X \twoheadrightarrow Y$
- Coalescence: if $X \twoheadrightarrow Y$ and $Z \subseteq Y$ and there is some W disjoint from Y such that $W \to Z$, then $X \to Z$

Lossless Decomposition into 4NF

A relation R is in Forth Normal Form (4NF) if for every nontrivial MVD X woheadrightarrow Y, X is a superkey

→ Since every FD is also an MVD, 4NF implies BCNF

4NF decomposition algorithm is almost identical to BCNF decomposition algorithm: repeatedly decompose using any 4NF violation you can find

Theorem: Suppose we decompose relation with schema XYZ into XY and XZ and project the relation for XYZ onto XY and XZ; then, $XY \bowtie XZ$ is guaranteed to reconstruct XYZ if either $X \twoheadrightarrow Y$ or $X \twoheadrightarrow Z$ holds

Example: turn Student into 4NF

- FD's and MVD's:
- Keys:
- 4NF violations:
- Decomposed relations:

Summary

4NF is more stringent than BCNF, which is more stringent than 3NF

		Guarantee	Guarantee
	Preserve	no redundancy	no redundancy
	FD's?	due to FD's?	due to MVD's?
3NF			
BCNF			
4NF			

Of course, all decompositions should be lossless!