CS145 L ecture Notes #14
L ossless Decomposition, 3NF, 4NF

L ossless Decomposition

Recall that welearned how to “normalize” relations(i.e., put themin BCNF)
by decomposing their schemas into two or more sets of attributes
Example: Enrol | (student, class, TA)

— Inany given class, each student is assigned to exactly one TA

— One TA can assist only one class

Recall that arelation R isin BCNF if for every nontrivial FD X — Y in R,
X isasuperkey
e X — Y isaBCNF violationif it is nontrivial and X does not contain
any key of R
e Based onaBCNFviolation X — Y, decompose R into two relations:
— Onewith X UY asitsattributes
(i.e., everything in the FD)
— Onewith X U (attrs(R) — X — Y) asits attributes
(i.e., left side of FD plus everything not in the FD)
Example: turn Enr ol | into BCNF
— BCNF violation:
— Decomposed relations:
What does this decomposition “work”? Why can't we just tear sets of at-
tributes apart as we like?
~» The decomposed relations need to represent the same information as
the original
~» We must be able to reconstruct the original from the decomposed re-
lations
Formally: suppose R is decomposed into S and 7'
e attrs(R) = attrs(S) U attrs(T)
o 5= Wattrs(S)(R); T = 7rattrs(T)(R)
e The decompositionislosslessif we can guarantee R = S <1 T’
Example of lossless decomposition: BCNF decomposition for Enr ol |
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Example of lossy decomposition: what if a TA may assist multiple classes?

~» Thejoin returns more tuples than the original relation

~» “Lossy” refers not to the loss of tuples, but to the loss of information
(the ability to distinguish different states of the original relation)

~» FD iswhat makes a decomposition lossless!

Theorem: Suppose we decompose a relation with schema XY 7 into XY
and X Z and project therelation for XY Z onto XY and X Z; then, XY ><q
X 7 isguaranteed to reconstruct XY 7 if either X — Y or X — 7 holds
Proof:
e Anything we project always comes back in the join
— Sure; and it does not depend on FD’s

e Anything that comes back in the join was in the original relation

On the other hand, if neither X — Y nor X — Z holds, then we could find
a counterexample where the join returns too much:
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3NF

One FD structure causes problems:
¢ If we decompose, we cannot check all FD’sin decomposed relations
e If wedon't decompose, we violate BCNF
Example: Enrol | (student, class, TA)
— FD’s: student cl ass — TAand TA — cl ass
— BCNF decomposition:
Assi st (TA, class) and Assi gn(TA, student)
— Cannot check st udent cl ass — TA without joining decomposed
relations back together

“Elegant” solution: define the problem away!
R isin Third Normal Form (3NF) if for every nontrivial FD X — A, either
e X issuperkey of R, or
e Aisamember of at least one key of R
Tradeoff:
e We can check al FD’sin the decomposed relation
e But now we might have redundancy dueto FD’s
Example: Enrol | (student, class, TA) isin3NF, but notin BCNF

L ossless & Dependency-Preserving Decomposition into 3NF

The “obvious’ approach of doing a BCNF decomposition, but stopping
when a relation schema is in 3NF, does not always work—it might till
allow some FD’s to get lost
~+» 3NF decomposition algorithm:
Given: arelation R and abasis F for the FD’sthat hold in R
Find F., acanonical cover for
For each FD X — Y in F., create arelation with schema XY
Eliminate arelation if its schemais a subset of another
If none of the schemas created so far contains akey of R, add arela-
tion schema containing akey of R
A canonical cover F. for F isaset of FD’swith the following 4 properties:
(& F.isequivalentto F
— Flogicaly impliesal FD’sin F. and vice versa
(b) No FD in F, isredundant, i.e., 7. isaminimal basis
— If weremove any FD from F., the set of remaining FD’swill no
longer be equivalent to F,

>N P
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(¢) No FD in F, contains redundant attributes
— Forany FD X — Y in F,, if weremove an attribute from either
X orY, theresult FD together with the other FD’sin . will no
longer be equivalent to F.
(d) Notwo FD’sin F, have same left sides
— JF.cannot contain X — Y and X — Z as separate FD’s; they
should have been combinedinto X — Y Z
Example: R(A, B,C, D, E)
F={A—BC,B—C,A— B,AB— C,BD — A}
1. Find acanonical cover F,
Repeat until no change:
- Remove redundant FD’s
- Remove redundant attributes from FD’s
- Combine FD’swith common left sides

2. Create ardation for each FD in F,
3. Eliminate arelation if its schemais a subset of another

4. 1f no schema contains akey of R, add one containing akey of R
First, what are the keys of R?

~» Final answer:

ANF

BCNF does not eliminate all redundancies
Example: St udent (SI D, class, club)
— No nontrivial FD’s; St udent isin BCNF
— Suppose your classes have nothing to do with the clubs you join
~» Still contains tons of redundancies!

~» Often comes up when converting from an ODL design
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Multivalued Dependencies

The multivalued dependency (MVD) X — Y holdsin arelation R if when-
ever we have two tuples of R that agree on al attributes of X, then we can
swap their Y components and get two new tuplesthat areasoin R
Example: in St udent , SI D — cl ass

~+» This property must hold for all pairs of tuples that agree on Sl D, not
just one pair
~ Intuitively, given SI D, cl ass and cl ub are “independent”

Trivial and nontrivial MVD’s:
e Trivial: X — Y whereY isasubset of X or X UY contains all
attributes of the relation
e Nontrivial: X — Y whereY isnot a subset of X and X U Y does
not contain all attributes of the relation
MVD rules:
e FDisMVD: If X — Y holdsin R, then X — Y asoholdsin R
— Because if X — Y, then swapping Y's between tuples that
agree on X will not create any new tuples
e Complementation: If X — Y in R, then X — attrs(R) — X =Y
asoholdsin R
— Intuitively, if X isgiven, Y and therest of the attributesin R are
“independent”
Sound and complete set of axioms for inferring FD’s and MV D’s (for your
reference only):
e FD reflexivity: if Y C X, then X — Y
FD augmentation: if X — Y, thenXZ — Y Z
FD trangitivity: if X - YandY — Z,then X — 7
MV D complementation: if X — Y in R, then X' — attrs(R)—X-Y
MVD augmentation: if X - Y andV C W, then XW — YV
MVD transitivity: if X - YadY — Z,then X — (Z —-Y)
Replication: if X — Y,then X — Y
Coalescence: if X — Y and Z C Y and there is some W digoint
fromY suchthaa W — Z,then X — Z
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L ossless Decomposition into 4NF

A relation R isin Forth Normal Form (4NF) if for every nontrivial MVD
X —» Y, X isasuperkey
~+» Since every FD isalso an MVD, 4NF implies BCNF

ANF decomposition algorithm is amost identical to BCNF decomposition
algorithm: repeatedly decompose using any 4NF violation you can find

Theorem: Suppose we decompose relation with schema XY 7 into XY and
X Z and project therelation for XY Z onto XY and X Z; then, XY <1 X Z
is guaranteed to reconstruct XY 7 if either X — Y or X — Z holds

Example: turn St udent into 4NF
— FD’'sand MVD'’s:
— Keys:
— 4NF violations:
— Decomposed relations:

Summary

ANF is more stringent than BCNF, which is more stringent than 3NF

Guarantee Guarantee
Preserve | no redundancy | no redundancy
FD’s? dueto FD’s? | dueto MVD’s?

3NF
BCNF
ANF

Of course, all decompositions should be lossless!
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