
CS 145 Spring '98 Handout 23

Written Assignment #4

Due Wednesday May 13

1. Do the following problems from the textbook. You only need to write the queries and updates
in SQL, you do not need to evaluate the queries or updates over the sample data. Write your
queries so that the answers will never include duplicates, but add the keyword distinct only in
cases where duplicates would otherwise be produced.

(i) Exercise 5.2.2 (page 262) parts (a){(d)

(ii) Exercise 5.3.1 (page 269) parts (a){(c)

(iii) Exercise 5.5.1 (pages 277{278) parts (b){(e)

(iv) Exercise 5.6.1 (pages 284{285) parts (b), (d), (g)

2. Suppose we wish to issue the following SQL query:

select * from R

where (A,B) in (select A,B from S)

but unfortunately the restricted DBMS we are using does not support multi-attribute in condi-
tions. Rewrite the above query into an equivalent one that uses a single-attribute in condition.

3. Consider the following query that uses the intersect operator.

(select R1:A from R1 where cond1)
intersect

(select R2:A from R2 where cond2)

Give an equivalent query that does not use the intersect operator.

4. Consider a relation Flights(from,to,cost,airline) containing nonstop 
ights from one city
to another. Note that the 
ights from city A to city B are independent of the 
ights from B to
A. For example:

from to cost airline

SF Denver 300 Frontier
SF Denver 350 United
Denver SF 250 United
Denver SF 250 Frontier
Denver Chicago 250 American
Chicago NY 250 Delta
Denver NY 500 American
Denver NY 400 TWA
SF NY 750 United

Prof. Widom Page 1 of 3



CS 145 Spring '98 Handout 23

(a) Give a single SQL query that returns the cost of the cheapest nonstop 
ight between each
pair of cities. For example, the result over the above relation instance should be:

from to cost

SF Denver 300
Denver SF 250
Denver Chicago 250
Chicago NY 250
Denver NY 400
SF NY 750

(b) Give a single SQL query that returns the cheapest cost of 
ying between each pair of cities
assuming we are willing to stop up to two times en route. For example, by stopping once (in
Denver), we can get from SF to NY for 700 instead of 750. In this example, we could stop
twice (in Denver and Chicago), but that would be more expensive (300+ 250+ 250 = 800).

(c) Is it possible to write a single SQL query that returns the cheapest cost of 
ying between
each pair of cities regardless of the number of stops? If so, give the query. If not, brie
y
explain why.

5. Consider a relation SalesReps(name,region,salary). Assume that no two sales-reps in the
same region have the same salary.

(a) Give a single query that returns each region along with the top salary in that region.

(b) Give a sequence of SQL statements, ending with a query that returns the top two salaries
for each region. The result of your �nal query should be an ordered two-column relation,
where each region is represented by two adjacent tuples, with the higher salary for each
region listed �rst. If a region only has one sales-rep, your result should still include a single
tuple for that region. For example, we might see the following result, where the \South"
region has only one sales-rep:

region salary

East 40,000
East 39,000
North 100,000
North 80,000
South 25,000
West 30,000
West 20,000

Hint: In your sequence of SQL statements you may want to create and query additional
relations.

Prof. Widom Page 2 of 3



CS 145 Spring '98 Handout 23

6. In Oracle and other database systems you can create a sequence, which can be used in the select
clause of SQL queries as a generator of integers. For example, if relation R has three tuples then
the commands:

create sequence seq;

select seq.nextval as num from R

will return the result:

num

1
2
3

If the select statement is issued again we get:

num

4
5
6

Consider a relation Sales(productID,price,store,date). Suppose we wish to retrieve a small
sample of the data in relation Sales for analysis. Assume that the sales data is evenly distributed
and that the tuples are stored randomly in the relation. Suppose a sequence seq has been
initialized as above. Give a single SQL query that returns at least 1% but fewer than 1.1% of
the tuples in the Sales relation. You may assume that Sales has at least a million tuples, but
you do not know in advance the exact number. Note that some (but not all) solutions to this
problem require modulo arithmetic. SQL does support the mod operator: mod(m,n) returns the
remainder when m is divided by n.

Prof. Widom Page 3 of 3


