
CS 145 Spring '98 Handout 47

Final Exam Review Sheet and Sample Questions

Information

� The �nal exam will be held on Wednesday June 10 from 8:30{10:30 AM. Note that the exam
will be two hours long, not three hours as scheduled by the university. The exam will be
held in the Gates Computer Science Building Room B01 (the Hewlett-Packard Auditorium)
on the Stanford campus. All students, including SITN students, are expected to attend the
exam on-campus. There will be no early or makeup exams.

� The exam will be closed book. However, each student may bring up to 6 pages of prepared
notes. That's 12 total sides of writing on 8-1/2"x11" paper.

� SITN students: Please bring a routing slip and a stapler to the exam.

� A sample solution for Written Assignment #7 will be available via the course Web page by
7:00 PM on Friday June 5.

� All sta� o�ce hours will continue as usual through Tuesday June 9. O�ce hours after June 9
are by appointment only.

Review Session

A question-and-answer review session will be conducted by the TA's on Tuesday June 9 from
7:00{8:30 PM in the Gates Computer Science Building Room B08. The review session will not be
televised.

Note that there will be no Monday afternoon review session on June 8.

Grade Reporting

� Graded Written Assignments #7 will be available at the �nal exam. Graded �nal exams with
a sample solution will be available from Sharon Lambeth in Gates 419 by 1:00 PM on Friday
June 12. Graded exams for SITN students will be sent by courier on Friday June 12. If you
are an SITN student and would prefer to have your graded exam left with Sharon, please
notify the TA's (by sending e-mail to cs145ta@cs) no later than Wednesday June 10.

� By Wednesday morning June 10 all students will be sent by email their scores for all 12
assignments and the midterm exam as recorded by us. If you �nd any errors in the recording
of the scores, please return the relevant assignment or exam to one of the TA's to have the
score corrected. All corrections must be submitted by noon on Thursday June 11.

Course Evaluations

We would appreciate having School of Engineering course evaluations returned by all on-campus
and SITN students in the course. If you do not �ll out an evaluation form in class, please spend
a few minutes after the �nal exam �lling out a form. Forms and pencils will be available from
the TA's.

Prof. Widom Page 1 of 7

CS 145 Spring '98 Handout 47

Material Covered

The �nal exam will cover all material covered by the midterm exam (see Handout #18, \Midterm
Exam Review Sheet and Sample Questions"). In addition, the following material will be covered:

� All lectures through Wednesday June 3

� Textbook readings: Sections 5.8, 5.10, 6.1{6.6, 7.1, 7.2, 7.4, 8.1{8.7 (except 8.3.2{8.3.4, 8.4.4)

� Written Assignments #4{7

� Programming Assignments #2{5

A few things to note:

� Although all material from the entire course is eligible to appear on the �nal exam, the exam
will be weighted heavily towards the material from the latter half of the course.

� The material on SQL (textbook Sections 5.1{5.7), although not included on this review sheet
since it was covered just before the midterm, is considered part of the latter half of the course
for exam purposes.

� Material that was not covered by an assignment (i.e., the material covered in the last lecture
of the course) is eligible to appear on the �nal exam, but any questions on this material will
be straightforward.

� As on the midterm exam, solutions on the �nal exam will be graded for simplicity and clarity
as well as for correctness.

Here is an outline of the material we have covered since the midterm exam. All of this material is
eligible to appear on the �nal exam.

1. Indexes

� Properties and uses of indexes

� Creating indexes in SQL

2. Views

� Creating and using views

� Modifying views

3. Constraints and triggers

� Non-null constraints

� Key constraints

� Referential integrity

� Attribute-based check constraints

� Tuple-based check constraints

� General assertions

� SQL3 triggers

Prof. Widom Page 2 of 7

CS 145 Spring '98 Handout 47

4. Programming with SQL

� Embedded SQL, cursors

� PL/SQL

5. Transactions

� Motivation: multi-user, crash recovery

� ACID properties

� Serializability

� Transaction rollback

� Isolation levels: read uncommitted, read committed, repeatable read,
serializable

6. Security and authorization

� Privileges

� Use of views for authorization

� grant and revoke statements

� Grant diagrams

7. Object-relational SQL3

� Declaring and using row types

� Queries over tables with row types

� Declaring value types (ADT's)

� Queries over tables with value types

8. OQL

� Methods and class extents in ODL

� Queries in OQL

9. Recursion in SQL3

� with statement

� Recursive union

� Mutual recursion

10. Data warehousing concepts as covered in the last lecture

11. Data mining concepts as covered in the last lecture

Sample Questions

What follows are the questions from Prof. Widom's 1996 midterm or �nal exam that cover material
from the latter half of the course this year.

Prof. Widom Page 3 of 7

CS 145 Spring '98 Handout 47

1. Queries in SQL

Consider the following relational schema:

course(course#, dept-name) // course# is the key

enroll(studentID, course#) // <studentID,course#> is the key

(a) Write a SQL query to �nd the ID's of all students who are not enrolled in any courses
in the EE department. Do not use the SQL except operator.

(b) Write a SQL query to �nd the names of all departments that o�er at least 20 courses.

2. Indexes

Consider again the following relational schema:

course(course#, dept-name) // course# is the key

enroll(studentID, course#) // <studentID,course#> is the key

Suppose there are three types of queries commonly asked on this schema:

(1) Given a course#, �nd the name of the department o�ering that course.

(2) Find all students together with all of the departments they are taking courses in; i.e.,
e�ectively take the natural join of enroll and course.

(3) Given a studentID, �nd all courses the student is enrolled in.

Here's the problem:

(a) What is the minimal number of indexes needed to speed up all three types of queries?

(b) On which attributes should these indexes be created?

3. Triggers

Consider the simple relation Employee(ID,salary) storing employee ID's and salaries, where
ID is a key. Consider the following two triggers over this relation:

create trigger T1

after insert on Employee

referencing new as New_Emp

update Employee

set salary = 1.1 * (select max(salary) from Employee)

where ID = New_Emp.ID

for each row

create trigger T2

after insert on Employee

referencing new_table as New_Emp

update Employee

set salary = 1.1 * (select max(salary) from Employee)

where ID in (select ID from New_Emp)

Prof. Widom Page 4 of 7

CS 145 Spring '98 Handout 47

Assume that relation Employee has no tuples in it initially. You are to show the simplest
example you can think of where using trigger T1 will produce a di�erent �nal database state
than using trigger T2.

(a) Show a sequence of inserted tuples. For purposes of the example, assume that all tuples
are inserted as the result of a single SQL statement.

(b) Show the �nal database state after trigger execution if only trigger T1 is de�ned.

(c) Show the �nal database state after trigger execution if only trigger T2 is de�ned.

4. Constraints

Consider the following SQL declarations:

create table Employee(ID integer unique, salary integer, dept# integer)

create table Department(number integer unique, salaryCap integer)

create assertion Policy check (

not exists (select *

from Employee, Department

where Employee.dept# = Department.number

and Employee.salary > Department.salaryCap))

(a) State in English the policy enforced by assertion Policy.

(b) Rewrite the above table declarations to use tuple-based check constraints instead of the
general assertion. Your constraints should be de�ned so that under no circumstances
can the policy be violated. Remember that you will be graded on simplicity as well as
correctness.

5. Authorization

Consider the simple relation Employee(ID,salary,dept#) storing employee ID's, salaries,
and departments, where ID is a key. Suppose you are the owner of this relation, and you
would like to give user Mary authorization to select records for those employees (and only

those employees) who earn less than $50,000 and work in a department with fewer than 10
people. Show the necessary sequence of commands.

6. Transactions

Consider the simple relation Employee(ID,salary) storing employee ID's and salaries, where
ID is a key. Consider the following two transactions:

T1: <begin transaction>

update Employee set salary = 2 * salary where ID = 25

update Employee set salary = 3 * salary where ID = 25

commit

T2: <begin transaction>

update Employee set salary = 100 where salary > 100

commit

Prof. Widom Page 5 of 7

CS 145 Spring '98 Handout 47

Suppose the salary of the employee with ID = 25 is 100 before either transaction executes.

(a) If both transactions T1 and T2 execute to completion with isolation level serializable,
what are the possible �nal salaries for the employee with ID = 25?

(b) Now suppose transaction T1 executes with isolation level read committed, transaction
T2 executes with isolation level read uncommitted, and both transactions execute to
completion. What are the possible �nal salaries for the employee with ID = 25?

7. OQL

Consider the following ODL class declarations:

interface Employee (extent Emps, key ID) {

attribute integer ID;

attribute Struct<string name, string street, string city> info;

relationship Set<Client> my_clients

inverse Client::my_sellers; }

interface Client (extent Clients, key client#) {

attribute integer client#;

attribute Struct<string name, string street, string city> info;

relationship Set<Employee> my_sellers

inverse Employee::my_clients; }

Write a query in OQL to �nd the ID's and names of all employees who have a client located
on the same street in the same city as the employee. Use distinct if and only if it's necessary
to remove duplicates in the answer.

8. Object-Relational SQL3

Consider the following SQL3 schema using row types, which emulates the ODL schema from
Problem 7 but omits the inverse relationship in Client.

create row type InfoType (name string, street string, city string)

create row type ClientType (client# integer, info InfoType)

create row type EmpType (ID integer, info InfoType,

client ref(ClientType))

create table Employee of type EmpType // ID is a key

create table Client of type ClientType // client# is a key

Note that an employee may have many clients, so relation Employee is not in BCNF.

Write a query in SQL3 to �nd the ID's and names of all employees who have a client located
on the same street in the same city as the employee. Use distinct if and only if it's necessary
to remove duplicates in the answer.

Prof. Widom Page 6 of 7

CS 145 Spring '98 Handout 47

9. Recursion

Consider a relation Edge(N1 integer, N2 integer), where a tuple (n1,n2) in Edge indicates
that there is an edge from node number n1 to node number n2 in a directed graph G. Consider
the following with statement in SQL3.

with recursive Mystery as

((select * from Edge)

union

(select Mystery.N1, Edge.N2

from Mystery, Edge

where Mystery.N2 = Edge.N1))

select N1

from Mystery

where N1 = N2

In one sentence, state in English what information is returned by the above with statement.

Prof. Widom Page 7 of 7

