
CS 145 Spring '98 Handout 49

Final Examination

� Please read all instructions (including these) carefully.

� There are ten problems on the exam, with a varying number of points for each problem
and subproblem for a total of 100 points. You have 100 minutes to complete the exam,
along with a bonus of 20 extra minutes to check your work. You should look through
the entire exam before getting started, in order to plan your strategy.

� The exam is closed book and closed notes, but you may refer to your six pages of
prepared notes.

� Please write your solutions in the spaces provided on the exam. Make sure your
solutions are neat and clearly marked. You may use the backs of the exam pages as
scratch paper along with the scratch space provided. Please do not use any additional
scratch paper.

� Simplicity and clarity of solutions will count. You may get as few as 0 points for a
problem if your solution is far more complicated than necessary, or if we cannot un-
derstand your solution.

NAME:

In accordance with both the letter and spirit of the Honor Code, I have neither given nor
received assistance on this examination.

SIGNATURE:

Problem Max points Points

1 15
2 5
3 15
4 15
5 5
6 12
7 20
8 5
9 5
10 3

TOTAL 100

Prof. Widom Page 1 of 13

CS 145 Spring '98 Handout 49

1. SQL Queries (15 points, 5 for each part)

This problem uses the following self-explanatory relational schema.

Student(ID, name, dorm, GPA) // ID is the only key

Plays(ID, sport) // <ID,sport> is the key

(a) Write a SQL query to �nd all dorms (no duplicates please) such that at least one
student who lives in the dorm does not play any sports.

(b) Can you write a SQL query that is equivalent to the following one but does not
use the keyword DISTINCT? If so, give the query. If not, explain why not.

SELECT DISTINCT dorm

FROM Student

WHERE GPA > 3.9

Prof. Widom Page 2 of 13

CS 145 Spring '98 Handout 49

(c) Can you write a SQL query that is equivalent to the following one but does not
use a HAVING clause? If so, give the query. If not, explain why not.

SELECT sport

FROM Student, Plays

WHERE Student.ID = Plays.ID

GROUP BY sport

HAVING AVG(GPA) > 3.0

2. Constraints and Assertions (5 points)

Consider the following three schema declarations. You may assume that all columns
have the same type, which has been omitted for brevity.

Schema 1: CREATE TABLE R(A PRIMARY KEY, B)

CREATE TABLE S(C, D REFERENCES R(A))

Schema 2: CREATE TABLE R(A PRIMARY KEY, B)

CREATE TABLE S(C, D CHECK(D IN (SELECT A FROM R)))

Schema 3: CREATE TABLE R(A PRIMARY KEY, B)

CREATE TABLE S(C, D)

CREATE ASSERTION Assert CHECK(

NOT EXISTS (SELECT * FROM S

WHERE D NOT IN (SELECT A FROM R)))

(Problem continues on following page...)

Prof. Widom Page 3 of 13

CS 145 Spring '98 Handout 49

Which of the following statements is true? (Please circle exactly one.)

� All three schemas are equivalent in terms of their behavior.

� Schemas 1 and 2 are equivalent but Schema 3 is di�erent.

� Schemas 1 and 3 are equivalent but Schema 2 is di�erent.

� Schemas 2 and 3 are equivalent but Schema 1 is di�erent.

� None of the three schemas are equivalent.

3. Assertions and Relational Algebra (15 points, 3 for each part)

Consider relations R(A;B;C) and S(A;B;C) with no assumptions about keys. For
each of the statements in SQL or relational algebra below, write in the box provided
the constraint that is speci�ed by the given statement.

� Please be speci�c about the actual attributes involved in the constraint.

� In all cases the correct answer corresponds to a single concept from the course
and can be speci�ed in a few words or symbols. Much longer answers will be
considered incorrect.

(a) Statement:

CREATE ASSERTION Mystery AS

(NOT EXISTS (SELECT A FROM R

GROUP BY A

HAVING COUNT(*) > 1))

Concept:

(b) Statement: �A(R) ><�A(S) = �A(R)

Concept:

(c) Statement: �B16=B2(�R1(A;B1;C1)(R) ./ �R2(A;B2;C2)(R)) = ;

Concept:

Prof. Widom Page 4 of 13

CS 145 Spring '98 Handout 49

(d) Statement: �A;B(R) ./ �A;C(R) = R

Concept:

(e) Statement:

CREATE ASSERTION TrickyOne AS

(NOT EXISTS ((SELECT * FROM R)

EXCEPT

(SELECT * FROM R WHERE A = A)))

Concept:

:

(Scratch space)

Prof. Widom Page 5 of 13

CS 145 Spring '98 Handout 49

4. Referential Integrity and Triggers (15 points)

Consider relations R(A;F) and S(P;B), where A is a key for R and P is a key for F .
Suppose we wish to enforce a referential integrity constraint in which attributeR:F (the
foreign key) references attribute S:P (the primary key). Furthermore, suppose we are
using a DBMS that supports SQL3 triggers but does not support referential integrity.
Write a set of triggers that enforces referential integrity between R:F and S:P . Your
triggers should implement the \set null" referential integrity enforcement policy, and
your trigger actions may include the command \<generate error>" if appropriate.
You should use the general SQL3 trigger syntax as covered in the textbook and in
class, not the restricted trigger syntax supported by Oracle.

Prof. Widom Page 6 of 13

CS 145 Spring '98 Handout 49

5. Authorization (5 points)

Give the simplest sequence of CREATE TABLE and GRANT statements you can think of
that results in a cycle in the corresponding grant diagram. For each statement indicate
the name of the user issuing the statement. You need not show the grant diagram.

6. Transactions (12 points, 3 for each part)

Consider a simple relation Scores(s integer) initially containing three tuples with
values <1>, <2>, and <3>. Consider the following two concurrent transactions.

Transaction T1: update Scores set s = s + 2;

insert into Scores (select * from Scores where s > 3);

commit;

Transaction T2: select sum(s) from Scores;

select sum(s) from Scores;

commit;

Assume that any interleaving between concurrent transactions is at the statement level.
In other words, transaction T2 cannot perform any read operations within the execu-
tion of transaction T1's individual modi�cation statements, although in some cases
transaction T2 may perform its read operations between the execution of transaction
T1's modi�cation statements. Similarly, transaction T1 cannot perform any modi�ca-
tion operations within the execution of transaction T2's individual queries, although
in some cases transaction T1 may perform its modi�cations between the execution of
transaction T2's queries. Assume for all parts of this problem that transaction T1

executes with isolation level serializable.

(Problem continues on following page...)

Prof. Widom Page 7 of 13

CS 145 Spring '98 Handout 49

(a) If transaction T2 executes with isolation level serializable, what are all the
possible pairs of values selected by T2's two queries? Clearly list each pair sepa-
rately.

(b) If transaction T2 executes with isolation level repeatable read, what are all
the possible pairs of values selected by T2's two queries? Clearly list each pair
separately.

(c) If transaction T2 executes with isolation level read committed, what are all the
possible pairs of values selected by T2's two queries? Clearly list each pair sepa-
rately.

(d) If transaction T2 executes with isolation level read uncommitted, what are all
the possible pairs of values selected by T2's two queries? Clearly list each pair
separately.

Prof. Widom Page 8 of 13

CS 145 Spring '98 Handout 49

7. Row Types and Indexes (20 points, 5 for each part)

Consider the following SQL3 relational schema, where column types in ROW TYPE def-
initions are omitted for brevity.

CREATE ROW TYPE StudType AS (ID, name, dept)

CREATE ROW TYPE CourseType AS (num, dept, title)

CREATE ROW TYPE ProfType AS (name, dept, office)

CREATE TABLE Student OF TYPE StudType // ID is the only key

CREATE TABLE Course OF TYPE CourseType // num is the only key

CREATE TABLE Prof OF TYPE ProfType // <name,dept> is the only key

CREATE TABLE Took(student REF(StudType), course REF(CourseType),

prof REF(ProfType), quarter STRING, grade FLOAT)

(a) Write a SQL3 query to �nd the ID's and names (no duplicates please) of all
students who took a course from a professor for which both the department of
the course and the department of the professor were di�erent from the student's
department.

(b) Write a SQL3 query to �nd the names and departments (no duplicates please) of
all professors whose o�ce includes the string \Gates" and who taught a course in
the \CS" department in quarter \S98".

Prof. Widom Page 9 of 13

CS 145 Spring '98 Handout 49

(c) Suppose you are using a non-SQL3 database system, so you don't have the capa-
bility to create row types or references as above. Give an alternate schema to the
one above that uses generic table de�nitions. SQL syntax and column types are
unnecessary|just specify the relation and column names. Your schema should
match the one above as closely as possible.

(d) Now suppose you are allowed to create a total of four indexes on the tables in
your schema from part (c). Assume that table Took is dramatically much bigger
than the other tables, and that your goal is to speed up queries such as those in
parts (a) and (b). Give the four index creation statements.

Prof. Widom Page 10 of 13

CS 145 Spring '98 Handout 49

8. OQL (5 points)

The following ODL schema is taken from Written Assignment #7.

interface Student

(extent Students, key ID) {

attribute integer ID;

attribute Struct{string first, string last} name;

relationship Set<Internship> applied

inverse Internship::applicants;

}

interface Internship

(extent Positions, key (company, city)) {

attribute string company;

attribute string city;

relationship Set<Student> applicants

inverse Student::applied;

}

Write an OQL query to �nd the ID's of all students (no duplicates please) such that
either all of the internships the student applied to are in Palo Alto, or all of the
internships the student applied to are in San Jose.

Prof. Widom Page 11 of 13

CS 145 Spring '98 Handout 49

9. SQL3 Recursion (5 points)

This problem uses relation Student from Problem 1:

Student(ID, name, dorm, GPA) // ID is the only key

Can you write a SQL query that is equivalent to the following one but does not use
recursion? If so, give the query. If not, explain why not.

WITH RECURSIVE Mystery AS

((SELECT ID, name FROM Student WHERE GPA > 3.5)

UNION

(SELECT Student.ID, Mystery.name

FROM Student, Mystery

WHERE Student.name = Mystery.name))

SELECT * FROM Mystery

:

(Scratch space)

Prof. Widom Page 12 of 13

CS 145 Spring '98 Handout 49

10. Data Warehousing and Mining (3 points)

(a) Give two di�erences between a fact table (e.g., table Sales in the lecture exam-
ple) and a dimension table (e.g., tables Stores, Items, and Custs in the lecture
example) in a ROLAP data warehousing scenario.

Di�erence 1:

Di�erence 2:

(b) Give the most famous example of an association rule discovered by a data mining
system, as reported in lecture.

:

(Scratch space)

Prof. Widom Page 13 of 13

