Warehousing

e¢ The most common form of information
integration: copy sources into a single DB and
try to keep it up-to-date.

e Usual method: periodic reconstruction of the
warehouse, perhaps overnight.

OLTP Versus OLAP

e Most database operations are of a type called
on-line transaction processing (OLTP).

[1 Short, simple queries and frequent
updates involving one or a small number
of tuples.

[Examples: answering queries from a Web
interface, recording sales at cash-registers,
selling airline tickets.

Of increasing importance are operations of the
on-line analytic processing (OLAP) type.

[]

Few, but very complex and time-
consuming queries (can run for hours).

Updates are infrequent, and/or the
answer to the query is not dependent on
having an absolutely up-to-date database.

Example: Amazon analyzes purchases
by all its customers to come up with an
individual screen with products of likely
interest to the customer.

Example: Analysts at Wal-Mart look for
items with increasing sales at stores in
some region.

Common architecture: Local databases, say
one per branch store, handle OLTP, while a

warehouse integrating information from all
branches handles OLAP.

The most complex OLAP queries are often
referred to as data mining.

Star Schemas

Commonly, the data at a warehouse is of two
types:

1. Fact Data: Very large, accumulation of facts
such as sales.

[1 Often “insert-only”; once there, a tuple
remains.

2. Dimension Data: Smaller, generally static,
information about the entities involved in the
facts.

Example

Suppose we wanted to record every sale of beer at
all bars: the bar, the beer, the drinker who bought
the beer, the day and time, the price charged.

e Fact data is in a relation with schema:

Sales(bar, beer, drinker, day, time, price)

° Dimension data could include a relation for
bars, one for beers, and one for drinkers.

Bars(bar, addr, lic)
Beers (beer, manf)
Drinkers(drinker, addr, phone)

Two Approaches to Building Warehouses

1.

ROLAP (Relational OLAP): relational
database system tuned for star schemas, e.g.
using special index structures such as:

[0 “Bitmap indexes” (for each key of a
dimension table, e.g., bar name, a bit-
vector telling which tuples of the fact
table have that value).

1 Materialized views = answers to general
queries from which more specific queries
can be answered with less work than if we
had to work from the raw data.

MOLAP (Multidimensional OLAP): A
specialized model based on a “cube” view of
data.

ROLAP

Y

Typical queries begin with a complete “star join,’
for example:
SELECT *
FROM Sales, Bars, Beers, Drinkers
WHERE Sales.bar = Bars.bar AND
Sales.beer = Beers.beer AND
Sales.drinker = Drinkers.drinker;

e Typical OLAP query will:

1. Do all or part of the star join.

2. Filter interesting tuples based on fact
and/or dimension data.

3. Group by one or more dimensions.
4. Aggregate the result.

e Example: “For each bar in Palo Alto, find
the total sale of each beer manufactured by
Anheuser-Busch.”

Performance Issues

e If the fact table is large, queries will take
much too long.

e Materialized views can help.

Example

For the question about bars in Palo Alto and beers
by Anheuser-Busch, we would be aided by the
materialized view:

CREATE VIEW BABMS (bar, addr, beer,
manf, sales) AS
SELECT bar, addr, beer, manf,
SUM(price) AS sales
FROM Sales NATURAL JOIN
Bars NATURAL JOIN Beers
GROUP BY bar, addr, beer, manf;

MOLAP

Based on “data cube”: keys of dimension tables
form axes of the cube.

e Example: for our running example, we might
have four dimensions: bar, beer, drinker, and
time.

e Dependent attributes (price of the sale in our
example) appear at the points of the cube.

e But the cube also includes aggregations (sums,
typically) along the margins.

[1 Example: in our 4-dimensional cube, we
would have the sum over each bar, each
beer, each drinker, and each time instant
(perhaps group by day).

[1 We would also have aggregations by all
subsets of the dimensions, e.g., by each
bar and beer, or by each beer, drinker,
and day.

Slicing and Dicing

Slice = select a value along one dimension,
e.g., a particular bar.

Dice = the same thing along another
dimension, e.g., a particular beer.

Drill-Down and Roll-Up

Drill-down = “de-aggregate” = break an
aggregate into its constituents.

[1 Example: having determined that Joe’s
Bar in Palo Alto is selling very few
Anheuser-Busch beers, break down his
sales by the particular beer.

Roll-up = aggregate along one dimension.

[Example: given a table of how much
Budweiser each drinker consumes at each
bar, roll it up into a table of amount
consumed by each drinker.

10

Performance

As with ROLAP, materialized views can help.

Data-cubes invite materialized views that are
aggregations in one or more dimensions.

Dimensions need not be aggregated
completely. Rather, grouping by attributes
of the dimension table is possible.

[1 Example: a materialized view might
aggregate by drinker completely, by beer
not at all, by time according to the day,
and by bar only according to the city of
the bar.

[1 Example: time is a really interesting
dimension, since there are natural
groupings, such as weeks and months,
that are not commensurate.

11

Data Mining

Large-scale queries designed to extract patterns
from data.

e Big example: “association-rules” or “frequent
itemsets.”

Market-Basket Data

An important source of data for association rules is
market baskets.

e As a customer passes through the checkout,
we learn what items they buy together, e.g.,
hamburger and ketchup.

e (ives us data with schema Baskets(bid,
item).

e Marketers would like to know what items
people buy together.

[1 Example: if people tend to buy
hamburger and ketchup together, put
them near each other, with potato chips
between.

[1 Example: run a sale on hamburger and
raise the price of ketchup.

12

Simplest Problem: Find the Frequent Pairs
of Items

Given a support threshold s, we could ask:

e Find the pairs of items that appear together in
at least s baskets.

SELECT bl.item, b2.item
FROM Baskets bl, Baskets b2
WHERE bl.bid = b2.bid AND
bl.item < b2.item
GROUP BY bl.item, b2.item
HAVING COUNT (*) >= s;

13

A-Priori Trick

e Above query is prohibitively expensive for
large data.

o A-priori algorithm uses the fact that a pair
(7,7) cannot have support s unless ¢ and j
both have support s by themselves.

e More efficient implementation uses an
intermediate relation Baskets1.

INSERT INTO Baskets1(bid, item)
SELECT * FROM Baskets
WHERE item IN (
SELECT item
FROM Baskets
GROUP BY item
HAVING COUNT(*) >= s

);

e¢ Then run the query for pairs on Basketsl
instead of Baskets.

14

