
Warehousing

� The most common form of information
integration: copy sources into a single DB and
try to keep it up-to-date.

� Usual method: periodic reconstruction of the
warehouse, perhaps overnight.

1



OLTP Versus OLAP

� Most database operations are of a type called
on-line transaction processing (OLTP).

✦ Short, simple queries and frequent
updates involving one or a small number
of tuples.

✦ Examples: answering queries from a Web
interface, recording sales at cash-registers,
selling airline tickets.

2



� Of increasing importance are operations of the
on-line analytic processing (OLAP) type.

✦ Few, but very complex and time-
consuming queries (can run for hours).

✦ Updates are infrequent, and/or the
answer to the query is not dependent on
having an absolutely up-to-date database.

✦ Example: Amazon analyzes purchases
by all its customers to come up with an
individual screen with products of likely
interest to the customer.

✦ Example: Analysts at Wal-Mart look for
items with increasing sales at stores in
some region.

� Common architecture: Local databases, say
one per branch store, handle OLTP, while a
warehouse integrating information from all
branches handles OLAP.

� The most complex OLAP queries are often
referred to as data mining.

3



Star Schemas

Commonly, the data at a warehouse is of two
types:

1. Fact Data: Very large, accumulation of facts
such as sales.

✦ Often \insert-only"; once there, a tuple
remains.

2. Dimension Data: Smaller, generally static,
information about the entities involved in the
facts.

4



Example

Suppose we wanted to record every sale of beer at
all bars: the bar, the beer, the drinker who bought
the beer, the day and time, the price charged.

� Fact data is in a relation with schema:

Sales(bar, beer, drinker, day, time, price)

� Dimension data could include a relation for
bars, one for beers, and one for drinkers.

Bars(bar, addr, lic)

Beers(beer, manf)

Drinkers(drinker, addr, phone)

5



Two Approaches to Building Warehouses

1. ROLAP (Relational OLAP): relational
database system tuned for star schemas, e.g.
using special index structures such as:

✦ \Bitmap indexes" (for each key of a
dimension table, e.g., bar name, a bit-
vector telling which tuples of the fact
table have that value).

✦ Materialized views = answers to general
queries from which more speci�c queries
can be answered with less work than if we
had to work from the raw data.

2. MOLAP (Multidimensional OLAP): A
specialized model based on a \cube" view of
data.

6



ROLAP

Typical queries begin with a complete \star join,"
for example:

SELECT *

FROM Sales, Bars, Beers, Drinkers

WHERE Sales.bar = Bars.bar AND

Sales.beer = Beers.beer AND

Sales.drinker = Drinkers.drinker;

� Typical OLAP query will:

1. Do all or part of the star join.

2. Filter interesting tuples based on fact
and/or dimension data.

3. Group by one or more dimensions.

4. Aggregate the result.

� Example: \For each bar in Palo Alto, �nd
the total sale of each beer manufactured by
Anheuser-Busch."

7



Performance Issues

� If the fact table is large, queries will take
much too long.

� Materialized views can help.

Example

For the question about bars in Palo Alto and beers
by Anheuser-Busch, we would be aided by the
materialized view:

CREATE VIEW BABMS(bar, addr, beer,

manf, sales) AS

SELECT bar, addr, beer, manf,

SUM(price) AS sales

FROM Sales NATURAL JOIN

Bars NATURAL JOIN Beers

GROUP BY bar, addr, beer, manf;

8



MOLAP

Based on \data cube": keys of dimension tables
form axes of the cube.

� Example: for our running example, we might
have four dimensions: bar, beer, drinker, and
time.

� Dependent attributes (price of the sale in our
example) appear at the points of the cube.

� But the cube also includes aggregations (sums,
typically) along the margins.

✦ Example: in our 4-dimensional cube, we
would have the sum over each bar, each
beer, each drinker, and each time instant
(perhaps group by day).

✦ We would also have aggregations by all
subsets of the dimensions, e.g., by each
bar and beer, or by each beer, drinker,
and day.

9



Slicing and Dicing

� Slice = select a value along one dimension,
e.g., a particular bar.

� Dice = the same thing along another
dimension, e.g., a particular beer.

Drill-Down and Roll-Up

� Drill-down = \de-aggregate" = break an
aggregate into its constituents.

✦ Example: having determined that Joe's
Bar in Palo Alto is selling very few
Anheuser-Busch beers, break down his
sales by the particular beer.

� Roll-up = aggregate along one dimension.

✦ Example: given a table of how much
Budweiser each drinker consumes at each
bar, roll it up into a table of amount
consumed by each drinker.

10



Performance

As with ROLAP, materialized views can help.

� Data-cubes invite materialized views that are
aggregations in one or more dimensions.

� Dimensions need not be aggregated
completely. Rather, grouping by attributes
of the dimension table is possible.

✦ Example: a materialized view might
aggregate by drinker completely, by beer
not at all, by time according to the day,
and by bar only according to the city of
the bar.

✦ Example: time is a really interesting
dimension, since there are natural
groupings, such as weeks and months,
that are not commensurate.

11



Data Mining

Large-scale queries designed to extract patterns
from data.

� Big example: \association-rules" or \frequent
itemsets."

Market-Basket Data

An important source of data for association rules is
market baskets.

� As a customer passes through the checkout,
we learn what items they buy together, e.g.,
hamburger and ketchup.

� Gives us data with schema Baskets(bid,

item).

� Marketers would like to know what items
people buy together.

✦ Example: if people tend to buy
hamburger and ketchup together, put
them near each other, with potato chips
between.

✦ Example: run a sale on hamburger and
raise the price of ketchup.

12



Simplest Problem: Find the Frequent Pairs

of Items

Given a support threshold s, we could ask:

� Find the pairs of items that appear together in
at least s baskets.

SELECT b1.item, b2.item

FROM Baskets b1, Baskets b2

WHERE b1.bid = b2.bid AND

b1.item < b2.item

GROUP BY b1.item, b2.item

HAVING COUNT(*) >= s;

13



A-Priori Trick

� Above query is prohibitively expensive for
large data.

� A-priori algorithm uses the fact that a pair
(i; j) cannot have support s unless i and j

both have support s by themselves.

� More e�cient implementation uses an
intermediate relation Baskets1.

INSERT INTO Baskets1(bid, item)

SELECT * FROM Baskets

WHERE item IN (

SELECT item

FROM Baskets

GROUP BY item

HAVING COUNT(*) >= s

);

� Then run the query for pairs on Baskets1

instead of Baskets.

14


