Chapter 1

The Worlds of Database
Systems

Databases today are essential to every business. Whenever you visit a major
Web site — Google, Yahoo!, Amazon.com, or thousands of smaller sites that
provide information — there is a database behind the scenes serving up the
information you request. Corporations maintain all their important records in
databases. Databases are likewise found at the core of many scientific investi-
gations. They represent the data gathered by astronomers, by investigators of
the human genome, and by biochemists exploring properties of proteins, among
many other scientific activities.

The power of databases comes from a body of knowledge and technology
that has developed over several decades and is embodied in specialized soft-
ware called a database management system, or DBMS, or more colloquially a
“database system.” A DBMS is a powerful tool for creating and managing large
amounts of data efficiently and allowing it to persist over long periods of time,
safely. These systems are among the most complex types of software available.
In this book, we shall learn how to design databases, how to write programs
in the various languages associated with a DBMS, and how to implement the
DBMS itself.

1.1 The Evolution of Database Systems

What is a database? In essence a database is nothing more than a collection of
information that exists over a long period of time, often many years. In common
parlance, the term database refers to a collection of data that is managed by a
DBMS. The DBMS is expected to:

1. Allow users to create new databases and specify their schemas (logical
structure of the data), using a specialized data-definition language.
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2. Give users the ability to query the data (a “query” is database lingo for
a question about the data) and modify the data, using an appropriate
language, often called a query language or data-manipulation language.

3. Support the storage of very large amounts of data — many terabytes or
more — over a long period of time, allowing efficient access to the data
for queries and database modifications.

4. Enable durability, the recovery of the database in the face of failures,
errors of many kinds, or intentional misuse.

5. Control access to data from many users at once, without allowing unex-
pected interactions among users (called isolation) and without actions on
the data to be performed partially but not completely (called atomicity).

1.1.1 Early Database Management Systems

The first commercial database management systems appeared in the late 1960’s.
These systems evolved from file systems, which provide some of item (3) above;
file systems store data over a long period of time, and they allow the storage of
large amounts of data. However, file systems do not generally guarantee that
data cannot be lost if it is not backed up, and they don’t support efficient access
to data items whose location in a particular file is not known.

Further, file systems do not directly support item (2), a query language for
the data in files. Their support for (1) — a schema for the data — is limited to
the creation of directory structures for files. Item (4) is not always supported
by file systems; you can lose data that has not been backed up. Finally, file
systems do not satisfy (5). While they allow concurrent access to files by several
users or processes, a file system generally will not prevent situations such as
two users modifying the same file at about the same time, so the changes made
by one user fail to appear in the file.

The first important applications of DBMS’s were ones where data was com-
posed of many small items, and many queries or modifications were made.
Examples of these applications are:

1. Banking systems: maintaining accounts and making sure that system
failures do not cause money to disappear.

2. Airline reservation systems: these, like banking systems, require assurance
that data will not be lost, and they must accept very large volumes of
small actions by customers.

3. Corporate record keeping: employment and tax records, inventories, sales
records, and a great variety of other types of information, much of it
critical.

The early DBMS’s required the programmer to visualize data much as it
was stored. These database systems used several different data models for
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describing the structure of the information in a database, chief among them
the “hierarchical” or tree-based model and the graph-based “network” model.
The latter was standardized in the late 1960’s through a report of CODASYL
(Committee on Data Systems and Languages).!

A problem with these early models and systems was that they did not sup-
port high-level query languages. For example, the CODASYL query language
had statements that allowed the user to jump from data element to data ele-
ment, through a graph of pointers among these elements. There was consider-
able effort needed to write such programs, even for very simple queries.

1.1.2 Relational Database Systems

Following a famous paper written by Ted Codd in 1970,2 database systems
changed significantly. Codd proposed that database systems should present
the user with a view of data organized as tables called relations. Behind the
scenes, there might be a complex data structure that allowed rapid response
to a variety of queries. But, unlike the programmers for earlier database sys-
tems, the programmer of a relational system would not be concerned with the
storage structure. Queries could be expressed in a very high-level language,
which greatly increased the efficiency of database programmers. We shall cover
the relational model of database systems throughout most of this book. SQL
(“Structured Query Language”), the most important query language based on
the relational model, is covered extensively.

By 1990, relational database systems were the norm. Yet the database field
continues to evolve, and new issues and approaches to the management of data
surface regularly. Object-oriented features have infilrated the relational model.
Some of the largest databases are organized rather differently from those using
relational methodology. In the balance of this section, we shall consider some
of the modern trends in database systems.

1.1.3 Smaller and Smaller Systems

Originally, DBMS’s were large, expensive software systems running on large
computers. The size was necessary, because to store a gigabyte of data required
a large computer system. Today, hundreds of gigabytes fit on a single disk,
and it is quite feasible to run a DBMS on a personal computer. Thus, database
systems based on the relational model have become available for even very small
machines, and they are beginning to appear as a common tool for computer
applications, much as spreadsheets and word processors did before them.
Another important trend is the use of documents, often tagged using XML
(eXtensible Modeling Language). Large collections of small documents can

LCODASYL Data Base Task Group April 1971 Report, ACM, New York.
2Codd, E. F., “A relational model for large shared data banks,” Comm. ACM, 13:6,
pp. 377-387, 1970.
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serve as a database, and the methods of querying and manipulating them are
different from those used in relational systems.

1.1.4 Bigger and Bigger Systems

On the other hand, a gigabyte is not that much data any more. Corporate
databases routinely store terabytes (102 bytes). Yet there are many databases
that store petabytes (10! bytes) of data and serve it all to users. Some impor-
tant examples:

1. Google holds petabytes of data gleaned from its crawl of the Web. This
data is not held in a traditional DBMS, but in specialized structures
optimized for search-engine queries.

2. Satellites send down petabytes of information for storage in specialized
systems.

3. A picture is actually worth way more than a thousand words. You can
store 1000 words in five or six thousand bytes. Storing a picture typi-
cally takes much more space. Repositories such as Flickr store millions
of pictures and support search of those pictures. Even a database like
Amazon’s has millions of pictures of products to serve.

4. And if still pictures consume space, movies consume much more. An hour
of video requires at least a gigabyte. Sites such as YouTube hold hundreds
of thousands, or millions, of movies and make them available easily.

5. Peer-to-peer file-sharing systems use large networks of conventional com-
puters to store and distribute data of various kinds. Although each node
in the network may only store a few hundred gigabytes, together the
database they embody is enormous.

1.1.5 Information Integration

To a great extent, the old problem of building and maintaining databases has
become one of information integration: joining the information contained in
many related databases into a whole. For example, a large company has many
divisions. Each division may have built its own database of products or em-
ployee records independently of other divisions. Perhaps some of these divisions
used to be independent companies, which naturally had their own way of doing
things. These divisions may use different DBMS’s and different structures for
information. They may use different terms to mean the same thing or the same
term to mean different things. To make matters worse, the existence of legacy
applications using each of these databases makes it almost impossible to scrap
them, ever.

As aresult, it has become necessary with increasing frequency to build struc-
tures on top of existing databases, with the goal of integrating the information
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distributed among them. One popular approach is the creation of data ware-
houses, where information from many legacy databases is copied periodically,
with the appropriate translation, to a central database. Another approach is
the implementation of a mediator, or “middleware,” whose function is to sup-
port an integrated model of the data of the various databases, while translating
between this model and the actual models used by each database.

1.2 Overview of a Database Management
System

In Fig. 1.1 we see an outline of a complete DBMS. Single boxes represent system
components, while double boxes represent in-memory data structures. The solid
lines indicate control and data flow, while dashed lines indicate data flow only.
Since the diagram is complicated, we shall consider the details in several stages.
First, at the top, we suggest that there are two distinct sources of commands
to the DBMS:

1. Conventional users and application programs that ask for data or modify
data.

2. A database administrator: a person or persons responsible for the struc-
ture or schema of the database.

1.2.1 Data-Definition Language Commands

The second kind of command is the simpler to process, and we show its trail
beginning at the upper right side of Fig. 1.1. For example, the database admin-
istrator, or DBA, for a university registrar’s database might decide that there
should be a table or relation with columns for a student, a course the student
has taken, and a grade for that student in that course. The DBA might also
decide that the only allowable grades are A, B, C, D, and F. This structure
and constraint information is all part of the schema of the database. It is
shown in Fig. 1.1 as entered by the DBA, who needs special authority to ex-
ecute schema-altering commands, since these can have profound effects on the
database. These schema-altering data-definition language (DDL) commands
are parsed by a DDL processor and passed to the execution engine, which then
goes through the index/file/record manager to alter the metadata, that is, the
schema information for the database.

1.2.2 Overview of Query Processing

The great majority of interactions with the DBMS follow the path on the left
side of Fig. 1.1. A user or an application program initiates some action, using
the data-manipulation language (DML). This command does not affect the
schema of the database, but may affect the content of the database (if the
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action is a modification command) or will extract data from the database (if the
action is a query). DML statements are handled by two separate subsystems,
as follows.

Answering the Query

The query is parsed and optimized by a query compiler. The resulting query
plan, or sequence of actions the DBMS will perform to answer the query, is
passed to the execution engine. The execution engine issues a sequence of
requests for small pieces of data, typically records or tuples of a relation, to a
resource manager that knows about data files (holding relations), the format
and size of records in those files, and indez files, which help find elements of
data files quickly.

The requests for data are passed to the buffer manager. The buffer man-
ager’s task is to bring appropriate portions of the data from secondary storage
(disk) where it is kept permanently, to the main-memory buffers. Normally, the
page or “disk block” is the unit of transfer between buffers and disk.

The buffer manager communicates with a storage manager to get data from
disk. The storage manager might involve operating-system commands, but
more typically, the DBMS issues commands directly to the disk controller.

Transaction Processing

Queries and other DML actions are grouped into transactions, which are units
that must be executed atomically and in isolation from one another. Any query
or modification action can be a transaction by itself. In addition, the execu-
tion of transactions must be durable, meaning that the effect of any completed
transaction must be preserved even if the system fails in some way right after
completion of the transaction. We divide the transaction processor into two
major parts:

1. A concurrency-control manager, or scheduler, responsible for assuring
atomicity and isolation of transactions, and

2. A logging and recovery manager, responsible for the durability of trans-
actions.

1.2.3 Storage and Buffer Management

The data of a database normally resides in secondary storage; in today’s com-
puter systems “secondary storage” generally means magnetic disk. However, to
perform any useful operation on data, that data must be in main memory. It
is the job of the storage manager to control the placement of data on disk and
its movement between disk and main memory.

In a simple database system, the storage manager might be nothing more
than the file system of the underlying operating system. However, for efficiency
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purposes, DBMS’s normally control storage on the disk directly, at least under
some circumstances. The storage manager keeps track of the location of files
on the disk and obtains the block or blocks containing a file on request from
the buffer manager.

The buffer manager is responsible for partitioning the available main mem-
ory into buffers, which are page-sized regions into which disk blocks can be
transferred. Thus, all DBMS components that need information from the disk
will interact with the buffers and the buffer manager, either directly or through
the execution engine. The kinds of information that various components may
need include:

1. Data: the contents of the database itself.

2. Metadata: the database schema that describes the structure of, and con-
straints on, the database.

3. Log Records: information about recent changes to the database; these
support durability of the database.

4. Statistics: information gathered and stored by the DBMS about data
properties such as the sizes of, and values in, various relations or other
components of the database.

5. Indexes: data structures that support efficient access to the data.

1.2.4 Transaction Processing

It is normal to group one or more database operations into a transaction, which
is a unit of work that must be executed atomically and in apparent isolation
from other transactions. In addition, a DBMS offers the guarantee of durability:
that the work of a completed transaction will never be lost. The transaction
manager therefore accepts transaction commands from an application, which
tell the transaction manager when transactions begin and end, as well as infor-
mation about the expectations of the application (some may not wish to require
atomicity, for example). The transaction processor performs the following tasks:

1. Logging: In order to assure durability, every change in the database is
logged separately on disk. The log manager follows one of several policies
designed to assure that no matter when a system failure or “crash” occurs,
a recovery manager will be able to examine the log of changes and restore
the database to some consistent state. The log manager initially writes
the log in buffers and negotiates with the buffer manager to make sure that
buffers are written to disk (where data can survive a crash) at appropriate
times.

2. Concurrency control: Transactions must appear to execute in isolation.
But in most systems, there will in truth be many transactions executing
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The ACID Properties of Transactions

Properly implemented transactions are commonly said to meet the “ACID
test,” where:

e “A” stands for “atomicity,” the all-or-nothing execution of trans-
actions.

e “I” stands for “isolation,” the fact that each transaction must appear
to be executed as if no other transaction is executing at the same
time.

e “D” stands for “durability,” the condition that the effect on the
database of a transaction must never be lost, once the transaction
has completed.

The remaining letter, “C,” stands for “consistency.” That is, all databases
have consistency constraints, or expectations about relationships among
data elements (e.g., account balances may not be negative after a trans-
action finishes). Transactions are expected to preserve the consistency of
the database.

at once. Thus, the scheduler (concurrency-control manager) must assure
that the individual actions of multiple transactions are executed in such
an order that the net effect is the same as if the transactions had in
fact executed in their entirety, one-at-a-time. A typical scheduler does
its work by maintaining locks on certain pieces of the database. These
locks prevent two transactions from accessing the same piece of data in
ways that interact badly. Locks are generally stored in a main-memory
lock table, as suggested by Fig. 1.1. The scheduler affects the execution of
queries and other database operations by forbidding the execution engine
from accessing locked parts of the database.

3. Deadlock resolution: As transactions compete for resources through the
locks that the scheduler grants, they can get into a situation where none
can proceed because each needs something another transaction has. The
transaction manager has the responsibility to intervene and cancel (“roll-
back” or “abort”) one or more transactions to let the others proceed.

1.2.5 The Query Processor

The portion of the DBMS that most affects the performance that the user sees
is the query processor. In Fig. 1.1 the query processor is represented by two
components:
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1. The query compiler, which translates the query into an internal form called
a query plan. The latter is a sequence of operations to be performed on
the data. Often the operations in a query plan are implementations of
“relational algebra” operations, which are discussed in Section 2.4. The
query compiler consists of three major units:

(a) A query parser, which builds a tree structure from the textual form
of the query.

(b) A query preprocessor, which performs semantic checks on the query
(e.g., making sure all relations mentioned by the query actually ex-
ist), and performing some tree transformations to turn the parse tree
into a tree of algebraic operators representing the initial query plan.

(¢) A query optimizer, which transforms the initial query plan into the
best available sequence of operations on the actual data.

The query compiler uses metadata and statistics about the data to decide
which sequence of operations is likely to be the fastest. For example, the
existence of an index, which is a specialized data structure that facilitates
access to data, given values for one or more components of that data, can
make one plan much faster than another.

2. The ezecution engine, which has the responsibility for executing each of
the steps in the chosen query plan. The execution engine interacts with
most of the other components of the DBMS, either directly or through
the buffers. It must get the data from the database into buffers in order
to manipulate that data. It needs to interact with the scheduler to avoid
accessing data that is locked, and with the log manager to make sure that
all database changes are properly logged.

1.3 Outline of Database-System Studies

We divide the study of databases into five parts. This section is an outline of
what to expect in each of these units.

Part I: Relational Database Modeling

The relational model is essential for a study of database systems. After ex-
amining the basic concepts, we delve into the theory of relational databases.
That study includes functional dependencies, a formal way of stating that one
kind of data is uniquely determined by another. It also includes normalization,
the process whereby functional dependencies and other formal dependencies are
used to improve the design of a relational database.

We also consider high-level design notations. These mechanisms include the
Entity-Relationship (E/R) model, Unified Modeling Language (UML), and Ob-
ject Definition Language (ODL). Their purpose is to allow informal exploration
of design issues before we implement the design using a relational DBMS.
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Part II: Relational Database Programming

We then take up the matter of how relational databases are queried and modi-
fied. After an introduction to abstract programming languages based on algebra
and logic (Relational Algebra and Datalog, respectively), we turn our atten-
tion to the standard language for relational databases: SQL. We study both
the basics and important special topics, including constraint specifications and
triggers (active database elements), indexes and other structures to enhance
performance, forming SQL into transactions, and security and privacy of data
in SQL.

We also discuss how SQL is used in complete systems. It is typical to
combine SQL with a conventional or host language and to pass data between
the database and the conventional program via SQL calls. We discuss a number
of ways to make this connection, including embedded SQL, Persistent Stored
Modules (PSM), Call-Level Interface (CLI), Java Database Interconnectivity
(JDBC), and PHP.

Part ITI: Semistructured Data Modeling and Programming

The pervasiveness of the Web has put a premium on the management of hierar-
chically structured data, because the standards for the Web are based on nested,
tagged elements (semistructured data). We introduce XML and its schema-
defining notations: Document Type Definitions (DTD) and XML Schema. We
also examine three query languages for XML: XPATH, XQuery, and Extensible
Stylesheet Language Transform (XSLT).

Part IV: Database System Implementation

We begin with a study of storage management: how disk-based storage can be
organized to allow efficient access to data. We explain the commonly used B-
tree, a balanced tree of disk blocks and other specialized schemes for managing
multidimensional data.

We then turn our attention to query processing. There are two parts to
this study. First, we need to learn query execution: the algorithms used to
implement the operations from which queries are built. Since data is typically
on disk, the algorithms are somewhat different from what one would expect
were they to study the same problems but assuming that data were in main
memory. The second step is query compiling. Here, we study how to select an
efficient query plan from among all the possible ways in which a given query
can be executed.

Then, we study transaction processing. There are several threads to follow.
One concerns logging: maintaining reliable records of what the DBMS is doing,
in order to allow recovery in the event of a crash. Another thread is scheduling:
controlling the order of events in transactions to assure the ACID properties.
We also consider how to deal with deadlocks, and the modifications to our algo-
rithms that are needed when a transaction is distributed over many independent
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Part V: Modern Database System Issues

In this part, we take up a number of the ways in which database-system tech-
nology is relevant beyond the realm of conventional, relational DBMS’s. We
consider how search engines work, and the specialized data structures that make
their operation possible. We look at information integration, and methodolo-
gies for making databases share their data seamlessly. Data mining is a study
that includes a number of interesting and important algorithms for processing
large amounts of data in complex ways. Data-stream systems deal with data
that arrives at the system continuously, and whose queries are answered contin-
uously and in a timely fashion. Peer-to-peer systems present many challenges
for management of distributed data held by independent hosts.

1.4 References for Chapter 1

Today, on-line searchable bibliographies cover essentially all recent papers con-
cerning database systems. Thus, in this book, we shall not try to be exhaustive
in our citations, but rather shall mention only the papers of historical impor-
tance and major secondary sources or useful surveys. A searchable index of
database research papers was constructed by Michael Ley [5], and has recently
been expanded to include references from many fields. Alf-Christian Achilles
maintains a searchable directory of many indexes relevant to the database field
[3].

While many prototype implementations of database systems contributed to
the technology of the field, two of the most widely known are the System R
project at IBM Almaden Research Center [4] and the INGRES project at Berke-
ley [7]. Each was an early relational system and helped establish this type of
system as the dominant database technology. Many of the research papers that
shaped the database field are found in [6].

The 2003 “Lowell report” [1] is the most recent in a series of reports on
database-system research and directions. It also has references to earlier reports
of this type.

You can find more about the theory of database systems than is covered
here from [2] and [8].
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