CS145 Introduction

About CS5145
Relational Model, Schemas, SQL
Semistructured Model, XML



Content of CS145

@ Design of databases.
* E/R model, relational model,
semistructured model, XML, UML, ODL.
€ Database programming.
* SQL, XPath, XQuery, Relational algebra,
Datalog.
€ Not DBMS implementation (that’s
CS245, 346, 347, sometimes CS345).



Textbook "Situation”

® The closest text for the course is First
Course in Database Systems/37 Edition.

+ But it won't be available until Friday.
+ First 2 chapters available on-line.
@ You may prefer Database Systems:

Complete Book (also used in CS245) or
have FCDB/2 E.

+ If so, we'll give you a free copy of the major
additions in FCDB/37 E.

3



Do You Know SQL?

® Explain the difference between:

SELECT b
FFROM R alb
1 ~10: 5120
WHERE a<1l0 OR a>=10; 10130
SELECT b B
R

FROM R;



And How About These?

SELECT a
FROM R, S
WHERE R.b = S.Db;

SELECT a

FROM R
WHERE b IN (SELECT b FROM S);



Course Requirements

1. . a little eBay supported by a
database.

¢ Individual.
€ Uses Stanford Oracle system.

2. . Gradiance (automated)
and “challenge problems” (written).

3. and



Gradiance Homework System

€ Automatic, fast-feedback system for
taking you through standard homework
problems and verifying your knowledge.

¢ : goal is to get 100% and learn.

+ Homework in C5145 is not a "mini-test.”

* You try as many times as you like and get
help with each wrong answer.



Gradiance (GOAL) Access

€ To get your account, you need:

1. “Value-Pak” with any of the class texts, or
purchase on-line.

2. Class token: For FCDB/3e use 1B8B815E;
for other books use ASDDE704.

® Details in the intro.html file.

€ Advice on using Gradiance:
www.gradiance.com/info.html



Interesting Stuff About Databases

@ It used to be about boring stuff:
employee records, bank records, etc.

® Today, the field covers all the largest
sources of data, with many new ideas.

+ Web search.

+ Data mining.

+ Scientific and medical databases.
+ Integrating information.



More Interesting Stuff

€ Database programming centers around
limited programming languages.
* Only area where non-Turing-complete
languages make sense.

+ Leads to very succinct programming, but
also to unique query-optimization problems
(CS346).

10



Still More ...

€ You may not notice it, but databases
are behind almost everything you do on
the Web.

* Google searches.
+ Queries at Amazon, eBay, etc.

11



And More...

€ Databases often have unique
concurrency-control problems (CS245,
CS347).

* Many activities (transactions) at the
database at all times.

+ Must not confuse actions, e.g., two
withdrawals from the same account must
each debit the account.

12



What is a Data Model?

1. Mathematical representation of data.

¢+ Examples: relational model = tables;
semistructured model = trees/graphs.

2. Operations on data.
3. Constraints.

13



A Relation is a Table

Attributes

(column d L

headers) name manf
Tl Winterbrew Pete’s
(rows) —» Bud Lite Anheuser-Busch

Relation
name

Beers
/

14




Schemas

® Relation schema = relation name and
attribute list.

+ Optionally: types of attributes.

+ Example: Beers(name, manf) or
Beers(name: string, manf: string)

® Database schema = set of all relation
schemas in the database.

¢ = collection of relations.

15



Why Relations?

@ \ery simple model.

. matches how we think about
data.

® Abstract model that underlies SQL, the
most important database language
today.

16



Our Running Example

Beers(name, manf) Bars
Bars(name, addr, license) Se%\ﬁequents
Drinkers(name, addr, phone) L
Likes(drinker, beer) Beers  Drinkers

Sells(bar, beer, price)
Frequents(drinker, bar)

® Underline = key (tuples cannot have
the same value in all key attributes).

+ Excellent example of a constraint.

17



Database Schemas in SQL

€ SQL is primarily a query language, for
getting information from a database.
€ But SQL also includes a data-definition

component for describing database
schemas.

18



Creating (Declaring) a Relation

€ Simplest form is:
CREATE TABLE <name> (
<list of elements>
);
€ To delete a relation:
DROP TABLE <name>;

19



Elements of Table Declarations

€ Most basic element: an attribute and its
type.

€ The most common types are:
* INT or INTEGER (synonyms).
* REAL or FLOAT (synonyms).

¢+ CHAR(~n ) = fixed-length string of n
characters.

* VARCHAR(n ) = variable-length string of
up to n characters.

20



Example: Create Table

CREATE TABLE Sells (
bar CHAR (20),
beer VARCHAR (20),
price REAL

) ;

21



SQL Values

@ Integers and reals are represented as
you would expect.

® Strings are too, except they require
single quotes.

+ Two single quotes = real quote, e.q.,
"Joe'’ s Bar’.

# Any value can be NULL.

22



Dates and Times

€ DATE and TIME are types in SQL.
& The form of a date value is:

DATE ‘yyyy-mm-dd’

4 : DATE "2007-09-30" for Sept.
30, 2007.

23



Times as Values

&® The form of a time value is:
TIME ‘hh:mm:ss’

with an optional decimal point and
fractions of a second following.
¢ : TIME ’15:30:02.5" =two
and a half seconds after 3:30PM.

24



Declaring Keys

€ An attribute or list of attributes may be
declared PRIMARY KEY or UNIQUE.

@ Either says that no two tuples of the
relation may agree in all the attribute(s)
on the list.

® There are a few distinctions to be
mentioned later.

25



Declaring Single-Attribute Keys

@ Place PRIMARY KEY or UNIQUE after the
type in the declaration of the attribute.

€ Example:
CREATE TABLE Beers (
name CHAR (20) UNIQUE,
mantf CHAR (20)

) ;

26



Declaring Multiattribute Keys

@ A key declaration can also be another
element in the list of elements of a
CREATE TABLE statement.

@ This form is essential if the key consists
of more than one attribute.

+ May be used even for one-attribute keys.

27



Example: Multiattribute Key

€ The bar and beer together are the key for Sells:
CREATE TABLE Sells (

bar CHAR (20),
beer VARCHAR (20),
price REAL,

PRIMARY KEY (bar, beer)

28



PRIMARY KEY vs. UNIQUE

. There can be only one PRIMARY KEY

for a relation, but several UNIQUE
attributes.

. No attribute of a PRIMARY KEY can
ever be NULL in any tuple. But

attributes declared UNIQUE may have
NULL’s, and there may be several
tuples with NULL.

29



Semistructured Data

& A data model based on trees.

¢ : flexible representation of
data.
¢ : sharing of documents

among systems and databases.

30



Graphs of Semistructured Data

® Nodes = objects.
@ Arc labels (properties of objects).

@ Atomic values at leaf nodes (nodes with
no arcs out).

@ Flexibility: no restriction on:
+ Labels out of a node.
* Number of successors with a given label.

31



Example: Data Graph

root Notice a
new kind
beer of data.

beer
[
® &

manf
name/ N\ Nddr P pR
N \
@ @ >4 . The beer object

N for Bud
The bar object
for Joe’s Bar

bar
manf

32



XML

& XML = Extensible Markup Language.

€ While HTML uses tags for formatting
(e.g., “italic”), XML uses tags for
semantics (e.g., “this is an address”).

33



XML Documents

@ Start the document with a dec/aration,
surrounded by <?xml ... ?> .

& Typical:

<?xml version = “1.0"” encoding
= “utf-8" 72>

& Balance of document is a
surrounding nested tags.

34



Tags

&®Tags, as in HTML, are normally open-
close pairs, as <FOO> ... </FOO>.
* Optional single tag <FOO/>.

€ Tags may be nested arbitrarily.
€ XML tags are case sensitive.

35



Example: an XML Document

<?xml version = “1.0” encoding = “utf-8” ?> A NAME

<BARS> subobject

<BAR><NAME>Joe’s Bar</NAME>

<BEER><NAME>Bud</NAME>
<PRICE>2.50</PRICE> </BEER>‘\

<BEER><NAME>Miller</NAME>

<PRICE>3.00</PRICE></BEER> A BEER
subobject

< /BAR>
<BAR> ...

</BARS>

36



Attributes

@ Like HTML, the opening tag in XML can
have attribute = value pairs.

@ Attributes also allow linking among
elements (discussed later).

37



Bars, Using Attributes

<?xml version = "1.0"” encoding = “utf-8" ?>
<BARS>

<BAR name =\"Joe’s Bar”>
<BEER name = “"Bud”|price = 2.50|/>
<BEER name x “Miller” price |= 3.00 />

</BAR> ! /
<BAR> ... B?i?eeaargd Notice Beer elements
</BARS> M have only opening tags

with attributes. .



DTD’s (Document Type Definitions)

€ A grammatical notation for describing
allowed use of tags.

@ Definition form:
<!DOCTYPE <root tag> |
<!ELEMENT <hame> (<components>) >

. . . more elements . . .
1>

39



<!DOCTYPE BARS [
BARS (BAR*)>

<lE
<lE
<lE
<lE
<lE

Example: DTD

L EMENT
LEMENT
_LEMENT
LEMENT

LEMENT

A BARS object has

_— Zeroormore BAR's

nested within.

BAR (NAME, BEER+)> A AR has one

S NAME and one

NAME (#PCDATA)]

or more BEER

BEER (NAME, PRICE)>  subobjocts.

PRIC

N

E (#PCDATA)
f

NAME and PRICE
are HTML text (“parsed
character data”).

A BEER has a
NAME and a
PRICE.

40



Attributes

€ Opening tags in XML can have
attributes.

®Ina DTD,
<!ATTLIST E...>

declares an attribute for element £,
along with its datatype.

41



: Attributes No closing

e tag or

<!ELEMENT BEER [EMPTYb subelements

<I!ATTLIST name

CDATA | #REQUIRED,,

mant CDAIA/#IMPLIED>///

Character Required = “must occur”;
string Implied = “optional
Example use:

<BEER name="Bud” />

42



