
1

Constraints

Foreign Keys

Local and Global Constraints

Triggers

2

Constraints and Triggers

�A constraint is a relationship among data
elements that the DBMS is required to
enforce.

� Example: key constraints.

�Triggers are only executed when a
specified condition occurs, e.g., insertion
of a tuple.

� Easier to implement than complex constraints.

3

Kinds of Constraints

�Keys.

�Foreign-key, or referential-integrity.

�Value-based constraints.

� Constrain values of a particular attribute.

�Tuple-based constraints.

� Relationship among components.

�Assertions: any SQL boolean expression.

4

Review: Single-Attribute Keys

�Place PRIMARY KEY or UNIQUE after the
type in the declaration of the attribute.

�Example:

CREATE TABLE Beers (

name CHAR(20) UNIQUE,

manf CHAR(20)

);

5

Review: Multiattribute Key

�The bar and beer together are the key for Sells:

CREATE TABLE Sells (

bar CHAR(20),

beer VARCHAR(20),

price REAL,

PRIMARY KEY (bar, beer)

);

6

Foreign Keys

�Values appearing in attributes of one
relation must appear together in certain
attributes of another relation.

�Example: in Sells(bar, beer, price), we
might expect that a beer value also
appears in Beers.name .

7

Expressing Foreign Keys

� Use keyword REFERENCES, either:

1. After an attribute (for one-attribute keys).

2. As an element of the schema:

FOREIGN KEY (<list of attributes>)

REFERENCES <relation> (<attributes>)

� Referenced attributes must be declared
PRIMARY KEY or UNIQUE.

8

Example: With Attribute

CREATE TABLE Beers (

name CHAR(20) PRIMARY KEY,

manf CHAR(20));

CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20) REFERENCES Beers(name),

price REAL);

9

Example: As Schema Element

CREATE TABLE Beers (

name CHAR(20) PRIMARY KEY,

manf CHAR(20));

CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20),

price REAL,

FOREIGN KEY(beer) REFERENCES

Beers(name));

10

Enforcing Foreign-Key Constraints

� If there is a foreign-key constraint
from relation R to relation S, two
violations are possible:

1. An insert or update to R introduces
values not found in S.

2. A deletion or update to S causes some
tuples of R to “dangle.”

11

Actions Taken --- (1)

�Example: suppose R = Sells, S = Beers.

�An insert or update to Sells that
introduces a nonexistent beer must be
rejected.

�A deletion or update to Beers that
removes a beer value found in some
tuples of Sells can be handled in three
ways (next slide).

12

Actions Taken --- (2)

1. Default : Reject the modification.

2. Cascade : Make the same changes in
Sells.

� Deleted beer: delete Sells tuple.

� Updated beer: change value in Sells.

3. Set NULL : Change the beer to NULL.

13

Example: Cascade

�Delete the Bud tuple from Beers:

� Then delete all tuples from Sells that have
beer = ’Bud’.

�Update the Bud tuple by changing ’Bud’
to ’Budweiser’:

� Then change all Sells tuples with beer =
’Bud’ to beer = ’Budweiser’.

14

Example: Set NULL

�Delete the Bud tuple from Beers:

� Change all tuples of Sells that have beer =
’Bud’ to have beer = NULL.

�Update the Bud tuple by changing ’Bud’
to ’Budweiser’:

� Same change as for deletion.

15

Choosing a Policy

�When we declare a foreign key, we may
choose policies SET NULL or CASCADE
independently for deletions and updates.

�Follow the foreign-key declaration by:

ON [UPDATE, DELETE][SET NULL CASCADE]

�Two such clauses may be used.

�Otherwise, the default (reject) is used.

16

Example: Setting Policy

CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20),

price REAL,

FOREIGN KEY(beer)

REFERENCES Beers(name)

ON DELETE SET NULL

ON UPDATE CASCADE

);

17

Attribute-Based Checks

�Constraints on the value of a particular
attribute.

�Add CHECK(<condition>) to the
declaration for the attribute.

�The condition may use the name of the
attribute, but any other relation or
attribute name must be in a subquery.

18

Example: Attribute-Based Check

CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20) CHECK (beer IN

(SELECT name FROM Beers)),

price REAL CHECK (price <= 5.00)

);

19

Timing of Checks

�Attribute-based checks are performed
only when a value for that attribute is
inserted or updated.

� Example: CHECK (price <= 5.00) checks

every new price and rejects the modification
(for that tuple) if the price is more than $5.

� Example: CHECK (beer IN (SELECT
name FROM Beers)) not checked if a beer

is deleted from Beers (unlike foreign-keys).

20

Tuple-Based Checks

�CHECK (<condition>) may be added as
a relation-schema element.

�The condition may refer to any
attribute of the relation.

� But other attributes or relations require a
subquery.

�Checked on insert or update only.

21

Example: Tuple-Based Check

�Only Joe’s Bar can sell beer for more than $5:

CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20),

price REAL,

CHECK (bar = ’Joe’’s Bar’ OR

price <= 5.00)

);

22

Assertions

�These are database-schema elements,
like relations or views.

�Defined by:

CREATE ASSERTION <name>

CHECK (<condition>);

�Condition may refer to any relation or
attribute in the database schema.

23

Example: Assertion

�In Sells(bar, beer, price), no bar may
charge an average of more than $5.

CREATE ASSERTION NoRipoffBars CHECK (

NOT EXISTS (

SELECT bar FROM Sells

GROUP BY bar

HAVING 5.00 < AVG(price)

));

Bars with an
average price
above $5

24

Example: Assertion

�In Drinkers(name, addr, phone) and
Bars(name, addr, license), there cannot be
more bars than drinkers.

CREATE ASSERTION FewBar CHECK (

(SELECT COUNT(*) FROM Bars) <=

(SELECT COUNT(*) FROM Drinkers)

);

25

Timing of Assertion Checks

�In principle, we must check every
assertion after every modification to any
relation of the database.

�A clever system can observe that only
certain changes could cause a given
assertion to be violated.

� Example: No change to Beers can affect
FewBar. Neither can an insertion to Drinkers.

26

Triggers: Motivation

�Assertions are powerful, but the DBMS
often can’t tell when they need to be
checked.

�Attribute- and tuple-based checks are
checked at known times, but are not
powerful.

�Triggers let the user decide when to
check for any condition.

27

Event-Condition-Action Rules

�Another name for “trigger” is ECA rule,
or event-condition-action rule.

�Event : typically a type of database
modification, e.g., “insert on Sells.”

�Condition : Any SQL boolean-valued
expression.

�Action : Any SQL statements.

28

Preliminary Example: A Trigger

�Instead of using a foreign-key
constraint and rejecting insertions into
Sells(bar, beer, price) with unknown
beers, a trigger can add that beer to
Beers, with a NULL manufacturer.

29

Example: Trigger Definition

CREATE TRIGGER BeerTrig

AFTER INSERT ON Sells

REFERENCING NEW ROW AS NewTuple

FOR EACH ROW

WHEN (NewTuple.beer NOT IN

(SELECT name FROM Beers))

INSERT INTO Beers(name)

VALUES(NewTuple.beer);

The event

The condition

The action

30

Options: CREATE TRIGGER

�CREATE TRIGGER <name>

�Or:

CREATE OR REPLACE TRIGGER <name>

� Useful if there is a trigger with that name
and you want to modify the trigger.

31

Options: The Event

�AFTER can be BEFORE.

� Also, INSTEAD OF, if the relation is a view.

• A clever way to execute view modifications:
have triggers translate them to appropriate
modifications on the base tables.

�INSERT can be DELETE or UPDATE.

� And UPDATE can be UPDATE . . . ON a
particular attribute.

32

Options: FOR EACH ROW

�Triggers are either “row-level” or
“statement-level.”

�FOR EACH ROW indicates row-level; its
absence indicates statement-level.

�Row level triggers : execute once for
each modified tuple.

�Statement-level triggers : execute once
for a SQL statement, regardless of how
many tuples are modified.

33

Options: REFERENCING

�INSERT statements imply a new tuple
(for row-level) or new table (for
statement-level).
� The “table” is the set of inserted tuples.

�DELETE implies an old tuple or table.

�UPDATE implies both.

�Refer to these by

[NEW OLD][TUPLE TABLE] AS <name>

34

Options: The Condition

�Any boolean-valued condition.

�Evaluated on the database as it would
exist before or after the triggering
event, depending on whether BEFORE
or AFTER is used.

� But always before the changes take effect.

�Access the new/old tuple/table through
the names in the REFERENCING clause.

35

Options: The Action

�There can be more than one SQL
statement in the action.

� Surround by BEGIN . . . END if there is
more than one.

�But queries make no sense in an
action, so we are really limited to
modifications.

36

Another Example

�Using Sells(bar, beer, price) and a
unary relation RipoffBars(bar), maintain
a list of bars that raise the price of any
beer by more than $1.

37

The Trigger

CREATE TRIGGER PriceTrig

AFTER UPDATE OF price ON Sells

REFERENCING

OLD ROW AS ooo

NEW ROW AS nnn

FOR EACH ROW

WHEN(nnn.price > ooo.price + 1.00)

INSERT INTO RipoffBars

VALUES(nnn.bar);

The event –
only changes
to prices

Updates let us
talk about old
and new tuples

We need to consider
each price change

Condition:
a raise in
price > $1

When the price change
is great enough, add
the bar to RipoffBars

