CS145 Midterm 

Wednesday Oct. 31, 2007 11:00 am - 12:15 pm 
Directions:  Answer all 5 questions in the spaces indicated.  If you want to add additional information, you can write on the backs of the pages (but indicate the existence of your comments on the front).  The exam is open book/notes.  You may also use a computer, but only for the purpose of storing and reading notes.  You should not use the Internet, any communication mechanism, or a database system. 

Name: ____Solutions____ 

I acknowledge and accept the Honor Code.

Signature: ____________________________________________________

1) Relational Algebra  (20 pts.) 

We can represent a linked list by a relation List(element, position), where a tuple such as (e,i) means that element e is at position i on the list.  The values of i  will always be 1,2,..., up to the length of the list. Below, you should write two relational-algebra expressions, using only the basic operations: union, intersection, difference, select, project, product, natural join, theta-join, and renaming. There are some restrictions on the condition in a selection, and these apply to the theta-join condition as well. You may use a sequence of steps in which the results of intermediate expressions are assigned to temporary relations if you like. To get full credit, your expressions must be approximately as simple as possible. 

(a) Suppose first that a selection condition can be any conditional expression, including logical connectives like AND, comparisons like = or <, and arithmetic, like x = y+1. Write an expression of relational algebra to produce the relation Succ(a,b), meaning that element b is the successor of element a on the list. That is, the position of b is exactly one higher than the position of a on the list (8 pts.) . 

R1(e1,i1) := RHO_{R1(e1,i1)} (List); 

R2(e2,i2) := RHO_{R2(e2.i2)} (List) 

Answer := PROJECT_{e1,e2}(SELECT_{i2=i1+1} (R1 * R2))

(b) Now suppose that selection conditions (and also conditions in theta-joins) can only take the form of a single attribute or constant compared to another single attribute or constant. In particular, no arithmetic like + is allowed. It becomes rather harder to write an expression for Succ(a,b) defined in part (a). However, it is still possible.  (Hint: start by computing the set of pairs of elements that are not successors.) Write the expression here (12 pts.): 

R1(e1,e2) := SELECT_{i2>i1}(RHO_{R1(e1,i1)} (List) * RHO_{R2(e2.i2)} (List))
R2(e1,e3) := SELECT_{i2>i1 AND i3>i2}(RHO_{R1(e1,i1)} (List) * RHO_{R2(e2.i2)} (List) * RHO_{R3(e3,i3)} (List)) /* e3 is at least 2 positions after e1 */
Answer := R1 - R2

  

  

2) SQL (30 pts.)

Consider the relation List in Question 1. Assume that element takes integer values only (no NULLs allowed). You can also assume the relation contains an odd number of tuples.  To get full credit, your expressions must be approximately as simple as possible. 

  

1. Assume that element takes distinct values. Write an SQL query to find the median of element. (Reminder: The median of a set of numbers, is the value for which half the numbers are larger and half are smaller.)  (15 pts) 


SELECT element
FROM List L1
WHERE (SELECT COUNT(*) FROM List WHERE element < L1.element) =
              (SELECT COUNT(*) FROM List WHERE element > L1.element);

   

    2. Assume element can take duplicate values.Write a SQL query to find the mode of element. (Reminder: The mode of a set of data is the value in the set that occurs most often.) (15 pts) 

  

SELECT element
FROM List
GROUP BY element
HAVING COUNT(*) >= ALL (SELECT COUNT(*) FROM List GROUP BY element);

  

3) Transactions (15 pts.; 5 per part) 

  

Consider table Joe_Sells(beer, price) and the following two transactions: 

T1: BEGIN TRANSACTION 

S1: UPDATE Joe_Sells SET price = (3 * price) WHERE beer = ‘Bud’ 

S2: UPDATE Joe_Sells SET price = (3 * price) WHERE beer = ‘Coors’ 

COMMIT 

T2: BEGIN TRANSACTION 

S3: UPDATE Joe_Sells SET price = (2 + price) WHERE beer = ‘Coors’ 

S4: UPDATE Joe_Sells SET price = (2 + price) WHERE beer = ‘Bud’ 

COMMIT 

  

Assume the following committed table before either transaction executes: 

  

Joe_Sells 

	beer 
	Price 

	Bud 
	2 

	Coors 
	3 


  

Additional assumptions: 

1. A transaction can see what it has written, even if it is not committed. 

2. UPDATE requires reading tuples as well as writing them. 

Suppose the statements execute in this order: S1, S3, S2, T1: COMMIT, S4, and T2: COMMIT. For the following cases, find the final prices of Bud and Coors. 

  

(a)    T1 executes with READ COMMITTED and T2 executes with READ UNCOMMITTED. 

  

Solution: 

	Stage 
	T1 sees 
	T2 sees 
	Committed 
	Uncommitted 

	Initial 
	B=2, C=3 
	B=2, C=3 
	B=2, C=3 
	None 

	After S1 (1 pt) 
	B=6, C=3 
	B=6, C=3 
	B=2, C=3 
	B=6 

	After S3 (1 pt) 
	B=6, C=3 
	B=6, C=5 
	B=2, C=3 
	B=6, C=5 

	After S2 (1 pt) 
	B=6, C=9 
	B=6, C=9 
	B=2, C=3 
	B=6, C=9 

	After T1 commits 
	  
	B=6, C=9 
	B=6, C=9 
	None 

	After S4 (2 pts) 
	  
	B=8, C=9 
	B=6, C=9 
	B=8, C=9 

	After T2 commits 
	  
	  
	B=8, C=9 
	None 


  

Bud: 8. Coors: 9. (no explanation: 2 pts for one, 5 pts for both)

  

(b)   T1 executes with READ UNCOMMITTED and T2 executes with READ COMMITTED. 

  

Solution: 

	Stage 
	T1 sees 
	T2 sees 
	Committed 
	Uncommitted 

	Initial 
	B=2, C=3 
	B=2, C=3 
	B=2, C=3 
	None 

	After S1 (1 pt) 
	B=6, C=3 
	B=2, C=3 
	B=2, C=3 
	B=6 

	After S3 (1 pt) 
	B=6, C=5 
	B=2, C=5 
	B=2, C=3 
	B=6, C=5 

	After S2 (1 pt) 
	B=6, C=15 
	B=2, C=5 
	B=2, C=3 
	B=6, C=15 

	After T1 commits 
	  
	B=6, C=15 
	B=6, C=15 
	None 

	After S4 (2 pts) 
	  
	B=8, C=15 
	B=6, C=15 
	B=8, C=15 

	After T2 commits 
	  
	  
	B=8, C=15 
	None 


  

Bud: 8. Coors: 15. (no explanation: 2 pts for one, 5 pts for both) 

(c)    Both T1 and T2 execute with REPEATABLE READ. 

  

Solution: 

	Stage 
	T1 sees 
	T2 sees 
	Committed 
	Uncommitted 

	Initial 
	B=2, C=3 
	B=2, C=3 
	B=2, C=3 
	None 

	After S1 (1 pt) 
	B=6, C=3 
	B=2, C=3 
	B=2, C=3 
	B=6 

	After S3 (1 pt) 
	B=6, C=3 
	B=2, C=5 
	B=2, C=3 
	B=6, C=5 

	After S2 (1 pt) 
	B=6, C=9 
	B=2, C=5 
	B=2, C=3 
	B=6, C=9 

	After T1 commits 
	  
	B=2, C=5 
	B=6, C=9 
	None 

	After S4 (2 pts) 
	  
	B=4, C=5 
	B=6, C=9 
	B=4, C=5 

	After T2 commits 
	  
	  
	B=4, C=5 
	None 


  

Bud: 4. Coors: 5. (no explanation: 2 pts for one, 5 pts for both. 3 pts for (8, 9). 4 pts for (4, 9).)   

In general: -1 pt for giving extra answers. -1 pt for accidentally swapping Bud and Coors. -2 pts for misreading the query by forgetting the WHERE clauses. 

   

4) Document Type Definitions  (10 pts.) 

Construct an XML DTD for a University database containing students, faculty and departments. 

Each faculty has a unique id#, a name, must belong to one or more departments, and may have students as advisee(s). For each advisee, the year when the student was aligned with the faculty is also included. 

Each student must have a unique student id#, name, must belong to one department, and must have one faculty as his/her advisor. 

Each department has a unique name, has one or more faculty and students. 

To make the DTD quicker to write, you may use abbreviations !E for !ELEMENT and !A for !ATTLIST.

  

  

<!DOCTYPE  UNIV   [ 

          <!ELEMENT UNIVERSITY(FACULTY*, STUDENT*, DEPT*)> 

  

          <!ELEMENT FACULTY(YEAR*)> 

                        <!ATTLIST FACULTY facultyId ID #REQUIRED> 

                        <!ATTLIST FACULTY name #REQUIRED> 

                       <!ELEMENT YEAR(#PCDATA)> 

<!ATTLIST YEAR adviseeId IDREFS #REQUIRED> 

                        <!ATTLIST FACULTY dept IDREFS #REQUIRED> 

                                    

          <!ELEMENT STUDENT  EMPTY> 

                      <!ATTLIST  STUDENT name #REQUIRED> 

                       <!ATTLIST  STUDENT studentId ID #REQUIRED> 

                      <!ATTLIST STUDENT dept IDREF #REQUIRED> 

                      <!ATTLIST STUDENT advisor IDREF #REQUIRED> 

                         

          <!ELEMENT DEPT EMPTY> 

                      <!ATTLIST DEPT name ID #REQUIRED> 

                      <!ATTLIST DEPT facultyId IDREFS #REQUIRED> 

          <!ATTLIST DEPT studentId IDREFS #REQUIRED> 

]> 

   

  

Alternative solution: 

 You can make "advisor alignment year" an attribute of student . The FACULTY and STUDENT elements will then look like 

  

        <!ELEMENT FACULTY(ADVISEE*)> 

                       <!ATTLIST FACULTY facultyId ID #REQUIRED> 

                        <!ATTLIST FACULTY name #REQUIRED> 

                       <!ATTLIST FACULTY adviseeId IDREFS #REQUIRED> 

                        <!ATTLIST FACULTY dept IDREFS #REQUIRED> 

  

          <!ELEMENT STUDENT  EMPTY> 

                      <!ATTLIST  STUDENT name #REQUIRED> 

                       <!ATTLIST  STUDENT studentId ID #REQUIRED> 

                      <!ATTLIST STUDENT dept IDREF #REQUIRED> 

                      <!ATTLIST STUDENT advisor IDREF #REQUIRED> 

                      <!ATTLIST STUDENT alignmentYear #REQUIRED> 

  

Here the attribute adviseeId refers to student ID. 

  

  

5) Triggers/Assertions (25 pts.)   

a) “ATTRIBUTE-BASED CHECKS”: when are they NOT performed? please circle one or more (2 pts.) 

· INSERT          DELETE         UPDATE 

      b) Imagine you are running a massive database schema (such as EBAY’s server) with thousands of tables and millions of transactions per day. 

· Is it a good idea to use ASSERTIONS (circle your answer)? (1 pt.) 

                                                              i.      YES     NO 

· Whether you chose YES or NO, please explain why, briefly. (2 pts.) 

  

As databases get bigger, it becomes inefficient to use assertions and it essentially slows

down the system. It is quite difficult to automatically figure out an efficient way to check

only the tables that are being affected by specific queries, so DBMS usually ends up

checking all the tables and this is simply not practical when you have millions of tables in

your database system.


  

    c)  You own a bar and you have the following two tables to manage your database: 

                                                              i.      Drinkers(name, tolerance) 

                                                            ii.      Drinks(drinkName, drinkerName, power) 

· Drinkers.tolerance is an integer between 0-10 

· Drinks.power is also an integer that indicates the strength of the Drink 

· Anytime a drinker orders a drink, an entry gets added to the Drinks table 

  

2 Questions: 

1.      Write an ASSERTION that would make sure that values of Drinkers.Tolerance is between 0-10 (10 pts). 

Version # 1 

CREATE ASSERTION Check_Tolerance CHECK ( 

NOT EXISTS ( 

SELECT * FROM DRINKER 

WHERE TOLERANCE IS NULL OR TOLERANCE <0 OR TOLERANCE >10 

) 

);   

Version # 2   

CREATE ASSERTION Check_Tolerance CHECK ( 

ALL (SELECT TOLERANCE FROM DRINKER) >=0 

AND 

ALL (SELECT TOLERANCE FROM DRINKER) <=10 

); 

  

Version # 3 

  

CREATE ASSERTION Check_Tolerance CHECK ( 

 (SELECT MIN(TOLERANCE) FROM DRINKER) >=0 

AND 

 (SELECT MAX(TOLERANCE) FROM DRINKER) <=10 

); 

2.      We need to make sure that any time someone orders a drink, the sum of Drinks.Power for that drinker stays below the drinker’s tolerance level. Write a TRIGGER that performs that task. (Hint: the trigger needs to reject the new drink if it pushes the sum of all the old drinks’ power above the drinkers tolerance number.) (10 pts.) 

  

CREATE TRIGGER Cab_Trigger 

REFERENCING NEW ROW AS NEWDRINK 

FOR EACH ROW 

WHEN ( 

(SELECT TOLERANCE FROM DRINKERS WHERE NAME=NEWDRINK.DRINKER.NAME) < 

(SELECT SUM(POWER) FROM DRINKS WHERE NAME=NEWDRINK.DRINKER.NAME) 

) 

ROLLBACK; 

  

  

  

     

  

