CS145 Midterm Examination
Thursday, November 4, 2004, 2:45 — 4PM

Directions

The exam is open book; any written materials may be used, as well as on-line or
electronically stored materials. However, it is prohibited to access Oracle or another
DBMS for the purpose of entering data and/or queries.

Answer all 5 questions on the exam paper itself.
The total number of points is 75 (i.e., one point per minute of work).
When SQL is called for, you must use standard SQL-99, not the Oracle version.

You will be graded not only on correctness of queries and other database code, but on
the simplicity of your answers. You may get as little as 0 points for an answer that
“works” but is excessively complicated.

Do not forget to sign the pledge below.

I acknowledge and accept the honor code.

Print your name here:

Problem 1: (12 points) In the space below, draw an E/R diagram that best represents
the following stipulations. Indicate keys, many-one relationships, weak entity sets, and
other features of E/R diagrams covered in class, as appropriate. At the bottom, you may
add a few lines of notes explaining the points that you think are least obvious.

1. There are hospitals, with a name and address.

117. There are rooms in hospitals, with a room number.

127. There are people, with a name and social-security number.

1. Some people are doctors, and doctors have a specialty; some people are patients, and
patients have an age.

v. An operation involves a patient and a doctor, and takes place in a hospital room. An
operation has a date and time. For full credit, do not make operations an entity set;
rather, make it a relationship.

FD:

Problem 2: (9 points) Consider the relation schema R(A, B,C, D, E, F') with functional
dependencies AC — B, BD — F, and F — CFE.

a) (3 pts.) Find all the keys of R.

b) (4 pts.) Choose one FD of R that violates BCNF (and state which). Decompose R
into two relations R1, and R2, using this FD.

Rl=__ = R2=____ IsRlin BCNF?

¢) (2 pts.) Suppose we project R onto S(A,C, D, E). Give one nontrivial FD that holds
in 5.

Problem 3: (6 points) Consider each of the following proposed rules regarding depen-
dencies. For each, if it is false, give a counterexample. If it is true, give a brief argument
why it is true, e.g., by applying the closure to derive a FD from given FD’s. You may
assume the relation to which they apply is R(A, B,C, D).

a) If A—»DB then A — B.

b) If A— B and BC — D, then AC — D.

¢c) IfA— Band B— C then A—+BD.

IsR27

Problem 4: (20 points) Consider the following four relations to store data about animals
in a zoo:

Animals(idNumber, type, cageNumber)
Cages(cageNumber, maxAnimals)
TypeKeepers(name, type)
CageKeepers(name, cageNumber)

1dNumber is a key for Animals, and cageNumber is a key for Cages. Cages.mazAnimals
specifies the maximum number of animals allowed in that cage. TypeKeepers lists people
responsible for caring for a particular type of animal, while CageKeepers lists people re-
sponsible for caring for a certain cage. For each of these two, both attributes form the key:
i.e. it is possible for the same person to care for multiple types/cages, and it is possible
for the same type/cage to be cared for by several people.

In the following, you may express queries either as a sequence of assignment statements
or as a single complex expression. You should assume all relations are sets, not bags.

a) (6 pts.) Consider the following sequence of relational algebra statements:

Templ := Animals p< CageKeepers
Temp?2 Animals < TypeKeepers
FinalAnswer := Templ N Temp2

Given the following sets of data for each of the relations, show (in the space on the next
page) the relation that will be stored into FinalAnswer (show the schema and all the tuples
that will be in the relation).

Animals:
1dNumber type cageNumber
1 Zebra 10
2 Monkey 20
3 Monkey 10
4 Kangaroo 30
5 Zebra 40
6 Monkey 40
CageKeepers: TypeKeepers:
name | cageNumber
Ann 10 name type
Chris 20 Ann Zebra
Chris 30 Bob Monkey
Bob 40 Ann Kangaroo
Bob 10 Chris Kangaroo

b) (2 pts.) State briefly what the query from (a) is asking.

¢) (6 pts.) Using (some of) the same relations:

Animals(idNumber, type, cageNumber)
Cages(cageNumber, maxAnimals)
TypeKeepers(name, type)
CageKeepers(name, cageNumber)

write an expression to find all pairs of animals of two different types in the same cage.
For each pair of animals satisfying this requirement, your expression should return each
animal’s idNumber and type, as well as the cageNumber of the cage they are in. For
example, if Animal 1 of type Zebra and Animal 2 of type Monkey are both in cage 10,
then the result of your expression should include a tuple (1, Zebra, 2, Monkey, 10) (the
attributes could be in a different order). The same animal pair should not appear twice in
your result.

d) (6 pts.) Using (some of) the same relations:

Animals(idNumber, type, cageNumber)
Cages(cageNumber, maxAnimals)
TypeKeepers(name, type)
CageKeepers(name, cageNumber)

write an expression to find all cages with more animals than the allowed maximum for that
cage. Your result should be a list of all cages that have more than their maximum. For
example, if there are 5 animals listed as being in cage 10, but cage 10 has a maximum of 3,
then (10) would appear in the result relation. Note: you may use the extended relational
algebra for this query.

[Problem 5 begins on the next page.]

Problem 5: (28 points) The relations below represent information about the 15 members
of the UN Security Council and the resolutions (res) that they voted on.

Members(name, status)
Votes(res, country, vote)

The status of a country is either ‘permanent’ or ’elected’. A vote can be either ’yes’, 'no’,
or 'abstain’.

You are asked below to write some fairly complex declarations and queries. Please
think these through, perhaps using scratch paper, before you write your answers in the
spaces. Reasonable responses will fit in the space allotted, provided you put SELECT
and FROM clauses on one line. We don’t insist that you print your answers, but illegible
scrawl will be assumed incorrect.

a) (4 pts.) Complete the SQL schema for Members and Votes, which is started below:

CREATE TABLE Members (
name CHAR(50)

status CHAR(10)

)

CREATE TABLE Votes (
res INT
country CHAR(50)
vote CHAR(10)

)

Include in your schema:

1. The keys indicated by underlines in the informal schema above.

12. The constraint that any country mentioned in Votes appears in the name column

of Members.
127. The constraint that no vote can be NULL.
1w. The constraint that vote can be only one of the three strings yes, no, and abstain.

Do not forget to place commas where needed.

b) (8 pts.) In order for a resolution to pass, there must be at least 9 'yes’ votes from
among the 15 members of the council. In addition, there must be no veto; that is,
none of the five permanent members of the council vote 'no’” on that resolution. We
wish to write a query on the relations:

Members(name, status)
Votes(res, country, vote)

to find the set of resolutions that passed. Enter subqueries in the spaces below that will
make the query work:

SELECT res FROM Votes vv
WHERE 9 <= (/* SQ1 %/

)
AND NOT EXISTS (/* SQ2 */

)
¢) (2 pts.) Explain informally what your SQ1 from (b) does.

d) (2 pts.) Explain informally what your SQ2 from (b) does.

e) (8 pts.) We also wish to write, for the relations

Members(name, status)
Votes(res, country, vote)

a query to list each permanent member of the council, along with the number of vetos ('no’
votes) they have cast. We must not forget to consider the possibility that a permanent
member cast no vetos. Below is the beginning of a query to do so; you have to complete
it correctly.

(SELECT name, COUNT(vote) AS numVetos

FROM Members JOIN Votes ON name = country
WHERE status = ’permanent’ AND vote = ’no’
GROUP BY name)

f) (4 pts.) Explain informally what each subquery you wrote in (e) does.

