Kildall’s Generalization of DFA

e  Generalizes DFA problems previously discussed.

e  The principles lead to some more powerful DFA schemes.

The DFA Framework
There are three essential ingredients.

1. A set V of values to be propagated. For example, V' = the set of sets of definitions in the RD prob-
lem.

2. A set I of functions from V to V. These are the transfer functions associated with blocks. For exam-
ple, in RD, F is the set of functions of the form

fY=(S-K)uda
for any sets K and G in V.

3. A binary meet operation, A, on V| to represent the effect of confluence of paths. In RD, A is union.

Axioms

To make the algorithms of DFA work, we need some assumptions about how V| F', and A behave and in-
teract. The most fundamental assumptions are

1. F s closed under composition.
2. F includes the identity function.
3. Als
a) Commutative: a Ab=bAa.
b) Associative: a A(bAc¢)=(aAb)Ac.
¢) Idempotent: a Aa = a.
That is, V with operation A is a semilattice.
4.  There is a top element T in V such that
TANa=a

for all a.

Intuition
e  FElements of V represent information, for example, a set of definitions that we believe reach a certain
point.

e A tells us how information combines when we reach the confluence of two paths. For example, reach-
ing definition sets combine by taking the union of the sets.

e T represents “no information.” When it meets value a, representing any information whatsoever, the
combination of a with T yields a.



Example of a Theorem

To see how the axioms can be used formally, let us consider the proof of a simple theorem: “Top 1s
unique.”

Proof: Suppose there were two “tops,” T and S. Since T'A a = a for any a, it follows that T A S = 5.
Similarly, S A a = a for any a,s0 SAT =T.
By commutativity, SAT =T A S. Thus,
S=TAS=SANT=T

Example: Available Expressions

e ¥ = the set of sets of expressions computed by statements in the program.
e F = the set of functions of the form
fY=(S-K)uda
where K and G are in V.
—  The identity function corresponds to
K=G=10
—  Composition of f(S) = (S — K1) U Gy with ¢(5) = (S — K3) U Ga is
g(F(S)) = [(S = K1) U GL) — Ka] UGy

= (S — (K1 U K»)) U (G2 U(G1 — K2))
(S—K)uG

where K = Ky U K5 and

GIGQU (Gl—[(z)

e A = intersection. Surely the laws
a) Commutativity: a Nb=5b0Na,
b) Associativity: anN (bNe)=(aNb)Ne, and
¢) Idempotence: aNa=a

hold. The top element 7T is the set of all expressions, since then T'N a = a for any a in V.

e Notice that “information” is of the form “I definitely know that this expression is unavailable here.”
T, which is all expressions, represents a state in which we have not ruled out the availability of any
expressions.

e  Subtle point: AE i1s anomalous in that we artificially make all expressions unavailable on entrance to

the header by “killing” all.




Example: Range Computation

This framework 1s not like the bit-vector frameworks considered so far. V' is much more complex than a
set of subsets of “all expressions” or “all definitions.”

We want to associate with each variable A, at each point in the program, a range [Amin, Amas] such
that the value of A at that point is known to lie between A, and Angz.

Let a value in the set V be a set of limits of the form A < ¢ or A > ¢, for some variable A and constant
¢. No variable has more than one upper limit or more than one lower limit in the set.

Subtle point: the interpretation of A < ¢ is that we have found reason to believe that, at the point
in question, A can have values up to ¢, but no reason to believe it can have higher values. If we have
not seen any values for 4 at all; the range of A is not [—o0, o0]; it is no range at all. We represent the
absence of a range by having no entry for A.

Application: Insert range checks for all array accesses. Use range computation to deduce that certain
indices are within range for the array, thus allowing the inserted checks to be deleted. Those that re-
main may be very useful!

Aside: Modifying the Flow Graph to Take Advantage of Comparisons

In our DFA framework to find ranges of (integer-valued) variables, we shall add blocks to the flow graph
and invent a new kind of intermediate statement.

A statement of the form [[A < ¢]] or [[A > ¢]] is an assertion. Here, ¢ can be a constant or another vari-
able. It has no effect on the computation of the program, but will affect the values IN and OUT that we
compute during data-flow analysis.

We use assertions to indicate the result of taking a branch after a comparison.




Example

Consider the following simple loop.

al[i] :=0
i:=1i+1
i < 1007

Presumably, when a < 100, we go around the loop, and we fall through when a > 101. Thus, we can add
boxes for assertions and obtain the following flow graph.

i:=1 By
[[i < 100]] By
ali] :=0 Bs
1:=1+1
[[i > 101]] By
Bs




The Set of Transfer Functions

The set F' is rather hard to describe formally. First, let us discuss only the subset of F' that corresponds
to blocks with a single statement. The full set F' is the closure of the basis under composition.

Fach function f in F turns each set of bounds S into another set of bounds T' = f(5).

Remember, S and T are assumed to have at most one upper and one lower bound for any variable.

We consider the various types of intermediate statements in turn.

1. The identity is in F', that is the function f(5) = S for all sets of bounds S.

2. The function corresponding to an assignment A := ¢ is in F'. That is, 7" is S with any bounds for 4
removed and the bounds 4 < ¢ and A > ¢ added.

3. The function corresponding to an assignment A := B for variable B. To construct 7', start with .S, but
remove any bounds for A. If there is a bound B < ¢ in S, then we add A < ¢ to T likewise for a lower
bound on B.

e Notice that if B is undefined, that is, it has no bounds, then 4 becomes undefined.

4.  The function corresponding to read A. To construct T, start with .S and remove any bounds for A.
Then add the bounds 4 < oo and A > —o0 to 7.

5. Functions corresponding to the arithmetic operations. For example, consider the assignment A := B+C.
Construct 7' by starting with S, removing any bounds for A.

a) If there is a bound B < b and a bound ¢ < ¢ in S, then add bound A < b+ ¢ to T.
b) If either B or C have no upper bound in S, i.e., they are undefined, then A has no upper bound in
T.
Lower bounds are handled analogously.
6. TFunctions corresponding to assertions. For example, consider the assertion [[4 < ¢]]. T is S with the

following modifications.

a) If A has a lower bound & > e in S, such that ¢ > ¢, then in T, there is no lower or upper bound
for A. That is, we have found no value A can have at this point.

b) Otherwise, if A has an upper bound & < d in S, then in T, the upper bound for A is & < min(c, d).

¢) If A has no upper bound in S, then A has no upper bound in 7.

Lower bounds are handled analogously.

For ambiguous assignments, e.g., A := *P, give A a range that covers all the ranges of the variables
that P could point to.

Confluence Operator

What is the appropriate value for S AT7 Recall that A < ¢ says we have reason to believe that A can have
values up to ¢ but have seen no higher values. Thus,

1.
2.
3.

If S has & <c¢and T has & < d, set S AT should have & < max(c, d).
If one of S and T has A < ¢, and the other has no upper bound for A, then S AT has A < ¢.
If neither .S nor 7" has an upper bound for A, then neither does S AT.

Lower bounds are handled analogously.




A Simple Data-Flow Analysis Algorithm

We can generalize the DFA solutions that involve bit vectors. Start with an initial set of bounds for in-
teger variables, and repeatedly apply the confluence operator and transfer functions of the blocks until
convergence.

The simplest way to start out is to assume IN[B] gives each variable the range [—oo, o] for all blocks B,
and to apply the transfer function for the block to get an initial value of OUT[B].

Example
For the loop of our previous example, we proceed in rounds as follows.

e  We concern ourselves only with the value of i, which we give as a range, rather than an upper and
lower bound.
IN ouT IN ouT IN ouT

[1,1] [=o0,00] [1,1] [-o0,00] [1,1]
[0, 0] [~ o0, 100]— o0, 101]— o0, 100]

e  This analysis correctly deduces that i has the value 101 on exit from Bj.

e It also deduces that 1 < 100 on entry to Bs, which is useful because it means a range check to see
that i has not exceeded the upper limit of the array a can be eliminated.

e  However, we have failed to deduce the lower limit i > 1 on entry to Bs, so we cannot eliminate the
check for the lower limit on a.

What has gone wrong is that we started assuming not “zero information,” but “total information.” That
1s, we assumed we had seen all possible values of i on entry to each block, when in fact we had no reason,
a priori, to assume that i was even defined.

e  That is analogous to assuming initially that all definitions reach the beginning of each block in the
RD problem.

e In RD, spurious definitions can then propagate themselves around loops. Here, our initial spurious
assumption that we knew of values for i like —234 on entry to B, and Bs propagates itself around

the loop.




What is the Top Element?

Recall that the top element of V' is the one that provides “no information,” i.e., its meet with any element
is that other element.

e In DFA problems seen previously, we start by assuming the top element enters each block. For exam-
ple, in RD, top is the set of no definitions.

e  But the set S that gives every variable the range [—o0, 00] is not the top element. Just the opposite,
S A X =S for any set of bounds X.

e  Tor the range checking DFA framework, the top element is ). Note that # A X = X for any set X.

Thus, we really should have initialized IN[B] to § in our previous example. That “works,” but convergence
is slow!

IN OUT IN OUT IN ouT

B, 0 [1,17 ® [1,1] 0 [1,1]
By 0 0 0 D [2,2] [2,2]
Bi 0 0 22 0 [23 0

B 0 [1,1] 0 [1,1]
By [2,4] 0 [2,101] [101,101]

Now, we get all the useful information: i has value 101 on exit from Bj, and the range of i at the state-
ment alil := 0 is [1,100], which is exactly what we hoped it would be.

A Revised Transfer Function to Speed Convergence

A useful trick is to assume that when we go through an assertion like [[i < 100]], we have “reason to be-
lieve that” values of i up to 100 will eventually be seen. We can revise the function f in F that is associ-
ated with an assertion [[A < ¢]], as follows.

Construct T' = f(S) by deleting any upper bound for & in S and inserting & < ¢ into 7' (unless there is a
conflicting lower bound). Otherwise, T is the same as S, including any lower bound for 4.

Lower bound assertions are treated similarly.

e Note that now a set can have an upper bound and no lower bound for a variable, or vice versa.

Example

For our running example we get

IN OUT IN ouT IN ouT

B, 0 [1,1] 0 [1,1] ] [1,1]

By § 1<100 0 i<100 [2,101] [2,100]
Bs ® 0 [1,100] [2,101] [1,100] [2,101]
By 0§ i>101[2,101][101,101] [2,101] [101, 101]

We get all the useful information about i, but convergence is much faster.




Momnotonicity

For an iterative solution like those discussed to make sense, we need an additional axiom, called mono-
tonicity.

As a preliminary, we need to define a partial order < on V. Say a <bifa Ab = a.

We can show < is a partial order on V. For example, < is transitive: ¢ < b and b < ¢ imply a < c.
Proof: a Ab=a and bAc =10 are given. Then

aAc=(aAb)Aec (substitution for a)
a A (bAc) (associativity)

= a A b (substitution for b A ¢)

a (substitution for a A b)

We say a framework 1s monotone if for every f in F and @ and b in V,
a < bimplies f(a) < f(b)
Intuitively, when you feed f more information, it doesn’t return less.

Equivalently, the framework 1s monotone if for all a, b, and f

flanb) < fla) A f(b)

Example: Reaching Definitions

For RD, Ais U, s0 a Ab = a means a is a superset of b. Thus, a < b means a is a larger set of definitions
than b!

>

e  The traditional interpretation of < is “less ignorance,” i.e., more information. That holds true here, if

we regard information as definitions known to reach a certain point.
RD i1s monotone; in fact it obeys the stronger distributivity condition
flanb)= fla) A f(b)
Proof: Let f(S)=(5— K)UG.

f(an):((an)—K) UG
(a—=K)UG)U ((b—K)UG)
fla) U f(b)

Example: Available Expressions
For AE, Ais N, and a A b = @ means that a is a subset of . Thus, < is set containment.

The functions for AE are of the same form as for RD and are easily shown distributive with respect to
intersection.



Example: Range Computation

Under what conditions is SAT = 5, where S and T are sets of bounds? For every bound A < ¢ in 7', there
must be a bound A < d in S, where ¢ < d. Lower bounds are analogous.

That is, S gives at least as wide a range to 4 as 7" does. .S may have a bound for 7', even in situations
where T does not know anything about A.

>

e  Thus, S < T again means “less ignorance,” or more possible values for more variables are known in .S

than in 7.

For either of the two sets of functions F' we discussed, RC is monotone. No proof is offered, but the intu-
ition about wider ranges should help.

However, RC is not distributive. Consider the following flow graph.

o read B
read C
o (1B <2 [B<3] n
[[C <3] [[C < 2]
Sl SZ
ns A := B+C

Let 57 be the set of bounds coming out of ny, and Sy be the set coming out of ns. Then
Si={B<2,c<3)
and S, = {B < 3,C < 2} (we ignore lower bounds, which are all —o0).

Then coming into ns we have
S3=5 A5 ={B<3Cc<3}

Let f be the transfer function for nz. Then f(S3) has bound 4 < 6.

However, f(S1) and f(S2) both have 4 <5, s0 f(S1) A f(S2) does also. Thus,
F(S1 N S2) # f(S1) A F(S2)

Fortunately, the discrepancy is in the right direction for monotonicity; we have f(S1 A S2) < f(S1) A f(S2),
since the former gives a broader range to A than does the latter.

DFA Problem Instances

Given a DFA framework (V| F, A), an instance is a flowgraph with an assignment of a (transfer) function
in F to each node.

e  We use f, for the function assigned to node n.

Functions for Paths

If P=mny — ny — -+ — ng is a path from the start node ng, the function associated with path P is the
composition of the functions associated with all but the last node on the path. That is,

fp="fro10ofr—ao0---0fo

Note that the last node has no effect; intuitively, fp tells us about what happens when we enter the block
corresponding to the last node.



Meet-Over-Paths

It turns out that the proper generalization of the standard DFA frameworks is to compute for each node
n the value MOP(n) equal to the meet over all paths P from ng to n, of fp(Top), where Top is the top
element of V.

Example: Reaching Definitions

For RD, the function fp gives the contribution of path P, that is, the set of definitions generated along
that path and not subsequently killed.

Thus, MOP(n) is exactly the set of definitions we have been computing.

Example: Range Computations

For RC, fp is a set of ranges for variables that includes all the values for variables that are ever computed
along path P, but may include other values that cannot be computed.

Computing the MOP

It turns out that when the framework is distributive, it is easy to compute the MOP by an iterative algo-
rithm like those we have been using.

However, when the framework is only monotone, the best we can do is compute some solution IN such
that IN(n) < MOP(n) for all nodes n.

Safety of Solutions < MOP

The set of paths from the start node to node n can be broken into two (possibly infinite) sets: the real
paths and the apparent paths.

Real paths can be taken on some execution of the program, while apparent paths are graph-theoretic
paths that happen not to be traversable by any execution of the program.

The meet of fp over any set S of paths is always < the meet taken over a subset of S. That is because
AN ANam Abp A ANby <ar AN ap,
e  We want the meet over real paths only, but have been content with the meet over both real and ap-
parent paths in all DFA applications discussed.
e The MOP is the meet over real and apparent paths, and is therefore < the true solution.

e If asolution X < the true solution is safe, then something < X must also be safe, although less
“accurate.”

10



General Tterative Algorithm

for all nodes n do
QUT(n) := fu(Top);
while changes to any OUT occur do
for all nodes n do begin
/* use depth-first order? */
IN(n) := meet, over all prede-
cessors p of n, of OUT(p);
/* meet over () is Top */
0UT(n) := f,(IN(n))
end

e  The above algorithm need not converge (the while-loop could be infinite). If it does converge, and the
framework is monotone, then IN(n) < MOP(n) for all n.

e If the DFA framework is distributive and converges, then IN(n) = MOP(n).

Example Where IN Differs from MOP

Consider the RC instance discussed earlier,

o read B
read C
ny [[B <2 [B<3]] no
[[C <3] [[C < 2]
ns A := B+C

We saw that on entrance to na, we shall only know 4 < 6, while along both paths, and therefore, in the
MOP solution, we know A < 5.

11



Type Determination in Typeless Languages
Languages that do not require type declarations, e.g., Lisp, Prolog, are becoming more important.

Serious attempts to compile such languages into efficient code use DFA to infer types of variables. For ex-
ample, code to add two integers is much more efficient than code to add objects of unknown and arbitrary

type.

Our first guess might be that computing types is something like computing reaching definitions. We asso-
clate a set of types with each variable at each point.

The confluence operator is union on sets of types, since if variable A has set 57 of possible types along one
path and set S5 of possible types along another, then A can have any of the types in 57 U S5 after conflu-
ence of the paths.

As control passes through a statement, we may be able to make some inferences about types of variables,
based on the operator used in the statement and the possible types of arguments and result for that oper-
ator.

Unfortunately, there are at least two problems with that approach.
1. The set of possible types for a variable may be infinite.

2. Type determination usually requires both forward and backward propagation of information to obtain
precise, safe estimates of the types of variables at points in the program.

We shall give only the sketchiest comments about these points. Much more is found in the Dragon Book.

Dealing With Infinite Type Sets
A language like SETL allows a statement like
A= {a}

to appear in a loop. At this point, A can assume any of the types integer, set of integers, set of sets of in-
tegers, and so on.

To handle this infiniteness in the type sets, we normally group types into a finite number of classes, with
simpler types, e.g., integer and set-of-integers, by themselves, and more complex types grouped into one
class, e.g., “set-of-thingees.”

Example of Forward-Backward Inference

Consider the statements
I:=4[J]
K := A[T]

Suppose at first we do not know anything about the types of variables A I, J, or K. However, let us sup-
pose that the array accessing operator [] requires an integer argument.

By examining the first statement, we infer that J is an integer at that point, and A is an array of elements
of some type.

Then, the second statement tells us I is an integer there.

Now, propagate inferences backwards. If I was computed to be an integer in the first statement, then the
type of the expression A[J] must be integer, so A must be an array of integers.

We can then reason forward again, to discover that the value assigned to K by the second statement must
also be an integer.

e  Note it is impossible to discover that elements of A are integers by reasoning only forwards or only
backwards.

12



