CQ’s With Negation

General form of conjunctive query with negation
(CQN):
H:i-Gi&...8Gp &
NOT F, & ... & NOT F,,

e (s are positive subgoals; F’s are negative
subgoals.

e Apply CQN @ to DB D by considering all
possible substitutions of constants for the
variables of (). If for some substitution:

1. Allthe positive subgoals become facts in
D and

2. None of the negative subgoals do,
then infer the substituted head.
e  Set of inferred facts is Q(D).

e  Containment of CQ’s doesn’t change: @)1 C
Q- iff for every database D, @Q1(D) C Qa(D).

Example

Ci: p(X,2) :- a(X,Y) & a(Y,2) &
NOT a(X,Z)

C5: p(A,C) :- a(A,B) & a(B,C) &
NOT a(A,D)

e Intuitively, Cy looks for paths of length 2 that
are not “short-circuited” by a single arc from
beginning to end.

e (5 looks for paths of length 2 that start from
a node A that is not a “universal source”; 1.e.,
there 1s at least one node D not reachable
from A by an arc.

e We thus expect C7 C (s, but not vice-versa.

Levy-Sagiv Test

There is a straightforward, time-consuming test for

Q1 C Qs

e  (reate a large-but-finite family of canonical
DB’s that consist of all DB’s using only the
constants 1,2,...,n, where n is the number of
variables in Q.



e  Test each canonical DB. If @1(D) is not
contained in Q2(D) for even one canonical DB
D, then containment of CQ’s surely doesn’t
hold. Otherwise, we claim that Q)1 C Q.

Proof of L/S Test

e Suppose Q1(D) C Q2(D) for each canonical
DB D, but there i1s some other DB F, for
which containment doesn’t hold. That 1s,
Q1(F) contains a tuple ¢ that Q2(F) does not
contain.

e  Consider the at most n symbols that variables
of @1 map to when showing that Q1(F)
contains t. We may rename these symbols
1,2,...,n; the counterexample still holds.

e Let D be the canonical DB consisting of
E restricted to the tuples having only the
symbols 1,2,...,n.

e  Since the L/S test passed, we know that
)2(D) contains ¢.

e  Since the assignment of ();’s variables that
shows t is in Q2(D) maps variables only to
1,2,...,n (remember all CQ’s are assumed
safe), the same assignment maps the positive
subgoals of ()2 to tuples of F and negative
subgoals of ()2 to tuples not in E.

0 In proof: note that D and F, after
renaming of symbols, agree on all tuples
that involve only 1,2,...,n. That is,

D and E “look the same” whenever we
assign variables to only 1,2, ... n.

CQ’s With Arithmetic

Suppose we allow subgoals with <, #, and other
comparison operators.

e  We must assume database constants can be
compared.

e  Technique is a generalization of the L/S
algorithm, but it is due to Tony Klug.

e  We shall work the case where < is a total
order; other assumptions lead to other
algorithms, and we shall later give an all-
purpose technique using a different approach.




Example

Consider the rules:
Ci: p(X,2) :- a(X,Y) & a(Y,Z) & X<Y
Cy: p(A,C) :- a(A,B) & a(B,C) & A<C

e  Both ask for paths of length 2. But @,
requires that the first node be numerically less
than the second, while )5 requires that the
first node be numerically less than the third.

Klug/Levy/Sagiv Test

Construct a family of canonical databases by
considering all partitions of the variables of ()4
(assuming we are testing @)1 C @2), and ordering
the partitions.

e To represent canonical DB’s assign the first
partition the value 0, the second the value 1,
and so on.

Example

To test C C O
Ci: p(X,2) :- a(X,Y) & a(Y,Z) & X<Y
Cy: p(A,C) :- a(A,B) & a(B,C) & A<C

we need to consider the partitions of {X,Y, Z} and
order them.

e  The number of ordered partitions is 13.

O For partition {X H{Y H{Z} we have 31 = 6
possible orders of the blocks.

O For the three partitions that group two
variables and leave the other separate we
have 2 different orders.

0 For the partition that groups all three,
there is one order.

e In this example, the containment test fails.
We have only to find one of the 13 cases to
show failure.

e  For instance, consider {X, Z}{Y'}. The
canonical database D for this case 1s
{a(0,1),a(1,0)}, and since X < Y, the body
of (' is true.

e  Thus, C1(D) includes p(0,0), the frozen head
of 01 .



e However, no assignment of values to A, B, and
C makes all three subgoals of C true, when D
is the database.

e  Thus, p(0,0) is not in Ca(D), and D is a
counterexample to C7 C C5.

Key Theorems No Longer Hold When Some
Predicates are Interpreted (e.g., Arithmetic
Comparisons)

e  Union of CQ’s theorem is false.

Example

Consider something we’ve seen before:
@1: p(X) :—-a(X) & 10<X & X<20
Ry p(X) - a(X) & 5<X & X<15
Ro: p(X) :- a(X) & 15<X & X<25
@1 € Ry U Rs, but neither ()1 C Ry nor @1 C R»

1s true.

e  (Containment mapping theorem is false.

Example

(1: panic :- r(U,V) & r(V,U)
> panic :- r(U,V) & U<V

e Note, “panic” is a 0-ary predicate, i.e., a
propositional variable.

0 0-ary predicates in the head present
no problems for CQ’s but don’t make
anything easier either.

e Informally: 1 = “cycle of length 27; @2 =
“nondecreasing arc.”

e Thus, @1 C Q.

[0 That is, whenever there is a pair of arcs
U — Vand V — U, surely one is
nondecreasing.

e However, if y is a containment mapping from
Q)2 to 1, there is no subgoal that u(U < V)
can be.

e Hence, no containment mapping from - to

Q1

Generalizing the Containment-Mapping
Theorem



e  The Klug/Levy/Sagiv approach uses canonical
databases to handle arithmetic.

e Another approach, due to Ashish Gupta and
Zhang/Ozsoyoglu, uses containment mappings.

O It has the advantage of working for any
kind of interpreted (“built-in”) predicate,
although we shall use arithmetic
comparisons in our examples.

The G/Z/O Test
To test whether @1 C @2, where @1, Q2 are CQ’s

with interpreted predicates:

1. Rectification: replace variables and constants
by new variables so that no variable appears
twice among the relational subgoals and the
head. Also, no constant may appear there at

all.

2. Add equality comparisons so the new variables
are equated to the variable or constant they

replace.
Examples
a) @1 above:

panic :- r(U,V) & r(V,U)

becomes

panic :- r(U,V) & r(X,Y) &
U=Y & V=X

b)
p(X) :-q(X,Y,X) &r(Y,a)

would become:

p(Z) :- qX,Y,W) &r(V,U) &
X=W & X=Z & Y=V & U=a

G/Z/0O Test (Continued)
3.  Having modified the CQ’s, let M be the set of

all containment mappings from the relational
subgoals of ()2 to the relational subgoals of

Q1

0 Note that with all variables appearing
only once, every mapping from subgoals
to subgoals that matches predicates gives
us a containment mapping.



e Then @7 C @ iff the interpreted subgoals of
@1 logically imply the OR, over all g in M, of
1 applied to the interpreted subgoals of Q5.

Example

Let
(1: panic :- r(U,V) & r(X,Y) &
U=Y & V=X
> panic :- r(U,V) & U<V
e Two containment mappings:

1. m(U)=U; p (V) =V. Here, the (U, V)
subgoal of )3 maps to the first subgoal of
Q1.

2. p(U) = X5 p2(V) =Y. Here, (U, V) of
()> maps to the second subgoal of Q.

o We must check:
U=Y ANV=X = uUV)V ulU V)
That is:
U=Y AV=X =U<LVVXIY
o Use equalities U = Y and V = X in the
hypothesis. Sufficient to show:
ULV v VU
(Obviously true).

Test For Logical Expressions Involving
Inequalities

e  For arbitrary interpreted predicates, we
can only make the necessary test by using
whatever algorithm is appropriate for those
predicates.

e  For interpreted predicates that are arithmetic
inequalities, we can use the same test that was

hidden inside the K/L/S test:

0 Consider all total orders of variables,
including those with equalities.

e If implication holds for each order, then
expression is true, else false.

Example
For the implication above:

U=Y AV=X = U<V VvV X<Y



two possible orders are:

U<V<X<Y
X<U=V<Y

e  For this implication, the only orders that
make the hypothesis (U =V A V = X)
true are:

U=V=X=Y
U=Y<V=X
V=X<U=Y

e Conclusion U <V V X <Y holds for each of
the three orders.

e  Test is exponential but works.

Extensions

e  FExtends to test for a CQ contained in a union
of CQ’s. The logical implication includes the
OR over all containment mappings from any
of the CQ’s in the union.

e  FExtends to containment of unions of CQ’s:
handle each CQ in the contained unions
separately.



