Hypergraphs

Hypergraph = nodes plus (hyper)edges that are
sets of any number of nodes.

e Applications include optimizing queries
that are joins and representing “universal
relations” (a useful data-modeling concept).

e Typically, nodes represent attributes and
hyperedges are sets of attributes.
Example

Suppose we have relations with schemas ABC',
ACD, and BE. This database schema could be
represented by the hypergraph

>

\

Acyclic Hypergraphs

These have some useful properties that make
query optimization easier than the general case.
Most “natural” queries correspond to acyclic
hypergraphs.

Definition depends on GYO reduction; GYO =
Graham-Yu-Ozsoyoglu.

e An earis a hyperedge H such that we can
divide its nodes into two groups: those that
appear in H and no other hyperedge and
those that are contained in another hyperedge

G.

O Note that an isolated edge is an ear; no G
is needed.

e GYO reduction of a hypergraph is the process
of repeatedly finding ears and removing them.
That is, we remove those nodes that are in the
ear and no other hyperedge; then we remove
the hyperedge itself, leaving the other nodes.

0 We say that ear H is consumed by G, if
all the nodes that are not unique to H
are in G.

O If a hypergraph is reduced to nothing

1

by GYO reduction, then it is said to be
acyclic.

O Aside: “acyclic” makes sense: if the
hypergraph is an ordinary graph, it is
acyclic iff it is a tree.

Example

Here is an acyclic hypergraph

The central hyperedge DEF can consume
each of the other three hyperedges.

At that time, the remaining hyperedge is
trivially an ear, since all of its nodes are
unique to 1it.

Formal GYO Reduction

The original definition of GYO reduction consisted
of the following two steps:

1.

Eliminate a node that is in only one
hyperedge.

Delete a hyperedge that is contained in
another.

The goal is to reduce a hypergraph to a single,
empty hyperedge.

You need to look at GYO reduction this way
to show that there is a unique GYO reduction
of any hypergraph, acyclic or not.

O Key idea of proof: candidates for step (1)
remain candidates, no matter what other
steps are taken.

Dangling Tuple Elimination

Useful as a first step in optimizing large joins.

e A collection of relations Ry, Ra, ..., Ry 1s
locally join consistent if for each 7 and j there
are no tuples that dangle between R; and R;.
Formally: ng,(R; > R;) = R;, and similarly
when ¢ and j are reversed.

e These relations are globally join consistent if
there are no dangling tuples when considered
as a group. Formally, for all i:

FRl(RlbﬂRzN"'NRn)IRZ'

e FEasy to check global consistency implies local
consistently.

0 What about the opposite?

Theorem

If the relation schemas Ry, Ro, ..., R, form an
acyclic hypergraph, then whenever relations for
these schemas are locally consistent, they are
globally consistent.

Proof

Induction on n, the number of hyperedges
(relations in the join).

Basis: For n = 1 there is nothing to check.

Induction: Assume for n — 1 hyperedges, and
prove for n.

e Let E be the first ear in a GYO reduction,
and let (G be the remaining hypergraph.

e Since (G has local consistency and n — 1
hyperedges, by the inductive hypothesis, GG
is globally consistent.

O That is, every tuple of every relation of GG
appears in the result of the join.

e F was consumed by some hyperedge H, and F
is locally consistent with H. Therefore, each
tuple t of E joins with some tuple s of H.

e s appears as part of some tuple r in the join
of the relations in G. Since attributes of £ are
either unique to it, or in H, ¢ joins with r.

00 Thus, t particpates in the join of all n
relations.

e However, if the hypergraph is not acyclic,
we can always find relations that are locally
consistent but not globally consistent.

3

Example

Consider AB = {00,11}, BC = {00,11}, and
AC = {01,10}.

e Any two relations are join-consistent. E.g.,
AB <1 AC = {001,110}, which projected onto
AB is {00, 11}.

e But AB i BC 1 AC' = 0, so the relations are
not globally consistent.

Reduction by Semijoins

If we are to take the join of several relations, it is
often efficient to first remove the dangling tuples.

e It guarantees that whatever order we join in,
the result never shrinks. Thus, the total work
is proportional to the output, and we can’t do
more than a constant factor better than that.

e To reduce relations to globally consistent
subsets, we can use the semijoin operation:

R := RD<X S =ar(RexaS) = R (7r(S5))
e Sometimes, semijoins don’t help eliminating
dangling tuples.

O For example, AB, BC', and AC' above are
not changed by any semijoin.

e However, if the hypergraph is acyclic, the
following algorithm produces a full reducer
for a set of relations.

0 That is, the result 1s a set of globally join-
consistent relations.

1. Pick an ear F that can be consumed
by hyperedge H. Execute the semijoin
H .= H<FE.

2. Recursively generate a full reducer for the
hypergraph with F removed.

3. Append the semijoin F := FD>< H.

Example

Consider the relation schemas ABC', AC'D, and
DE.

e ACD is an ear that is consumed by ABC'.

e In the resulting hypergraph, ABC' can be
consumed by BFE.

e The full reducer:

ABC := ABC DX ACD
BE := BED ABC
ABC := ABC D> BE
ACD := ACDDPX ABC

Proof It Works

e After step (1), it is impossible for the join of
the remaining hyperedges to have a tuple that
doesn’t join with any tuple of F.

e Inductively, step (2) leaves the relations other
than F in a globally join-consistent state.

e Then, step (3) eliminates from E any tuples
that do not join with the other relations.

