
Multivalued Dependencies

In relation R, we say MVD X!!Y holds if
whenever there are tuples s and t in R such that
�X(s) = �X(t), then there is a tuple r in r such
that:

1. �XY (r) = �XY (s).

2. �(R�Y )[X(r) = �(R�Y )[X(t).

� I.e., r agrees with s on the attributes
mentioned, and with t on X and all the
attributes not mentioned.

Example

Consider CTHRSG. In addition to the FD's
C ! T ; HR ! C; HT ! R; HS ! R; CS ! G;
CH ! R, we might reasonably expect the MVD
C!!HR.

� That is, given a course, the hour-room pairs
are independent of the teacher-student-grade
triples.

✦ There will be a unique teacher for the
course, but student-grade information
should appear in combination with each
hour-room pair, since there is no logical
reason to assign di�erent grades for
di�erent hours and rooms.

Axiomatization of FD's + MVD's

Start with Armstrong's Axioms. Then add:

A4: Complementation. If X!!Y holds in R, then
X!!(R�X � Y ).

A5: MVD augmentation. If X!!Y , then
XZ!!Y Z for any set of attributes Z.

A6: MVD transitivity. If X!!Y and Y!!Z, then
X!!(Z � Y ).

A7: Promotion. If X ! Y , then X!!Y .

A8: If X!!Y and U ! V , where:

1. U is disjoint from Y , and

2. V � Y ,

then X ! V .

✦ Example: AB!!CDE and FG ! C

imply AB ! C.

1



Decomposition Rules

� For FD's, we know that if X ! A1 � � �An,
then we can \decompose" into
X ! A1; : : : ; X ! An.

� MVD's do not always allow right sides of size
1.

� However, X!!(R � X) always holds by A1
(trivial FD's), A7, and A4. We can break
R�X into some disjoint partition, say

X!!Y1 Y2 � � � Yk

such that X!!Z i� Z is a union of some of
the Yi's.

Example

For CTHRSG, we have

C!!T HR SG

i.e., a course has a teacher (only one because of the
FD C ! T ), a set of hour-room pairs, and a set of
student-grade pairs.

Generalized Dependencies

Unify FD's, MVD's, lossless joins, and inferences
about dependencies. A generalized dependency

consists of:

1. One or more hypothesis rows consisting of
abstract symbols, one for each attribute of the
relation in question.

2. A conclusion that is either another row or an
equality between two symbols.

✦ If the conclusion is a row, then the GD
is a tuple-generating dependency (TGD);
if an equality it is an equality-generating

dependency (EGD).

� We shall usually talk about typed
dependencies, which means that a symbol may
not appear in two di�erent columns, and we
may not equate (in the conclusion) symbols
from di�erent columns.

� Usually, we talk about full dependencies,
meaning that the conclusion row of a TGD
uses only symbols that have appeared
elsewhere.
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� But sometimes we like to have partial
dependencies, where the conclusion introduces
new symbols.

Semantics of GD's

If there is a mapping from the symbols of the
hypothesis rows that turns each hypothesis into
a tuple of R, then the conclusion must hold.

� If it is an EGD, then R must be such that
the equated symbols are mapped to the same
value.

� If a full TGD, then the conclusion row, with
the same mapping applied, must also be a row
of R.

� If a partial TGD, then there is a way to map
the new symbols in the conclusion so the
conclusion row becomes a tuple of R.

Examples

� In R = ABCD the FD AB ! C:

A B C D

a1 b1 c1 d1
a1 b1 c2 d2

c1 = c2

� The MVD A!!BC:

A B C D

a1 b1 c1 d1
a1 b2 c2 d2

a1 b1 c1 d2

� The join dependency (JD) ./(AB;BC;CD),
which says that AB, BC, and CD are a
lossless-join decomposition of ABCD:

A B C D

a b c1 d1
a2 b c d2
a3 b3 c d

a b c d

The Chase Infers Full GD's

Given a set of full GD's G, does another GD G

follow? (I.e., does every relation instance that
satis�es G also satisfy G?)
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� Start with a relation R consisting of the
hypothesis rows of G.

� Repeatedly apply GD's H of G to the current
relation:

a) If H is a TGD, map its hypothesis rows to
tuples of R in any way, and insert the mapped
conclusion row of H into R.

b) If H is an EGD, map its hypothesis rows
to tuples of R in any way and equate the
symbols of R that H's conclusion says are
equal.

✦ Remember to equate all occurrences of
the symbols that the EGD says are equal.

✦ Subtle point: if one or both of the
equated symbols appear in the conclusion,
change these occurrences as well; i.e., the
desired conclusion must change as well as
the tuples in the constructed relation.

� Since no new symbols are ever generated
(because of the \full" assumption), eventually
this process stalls.

� At that time, if the conclusion row of G has
been added to R (in the case G is a TGD) or
the symbols that G says must be equal have
been equated (in case G is an EGD), then
conclude that G follows from G. If not, then
not.

Proof the Chase Works

� Soundness: Each inference made is sound,
since it is a direct application of a given GD.

� Completeness: Suppose the conclusion of
G is not obtained. Then the �nal R is a
counterexample:

✦ It satis�es every GD in G, but does not
satisfy G.

Proof That a Key Plus Relations From a

Minimal Cover Have a Lossless Join

Suppose we have a minimal cover F consisting of
FD's Xi ! Ai for i = 1; 2; : : : ; n, and we choose
database schema

fX1A1; : : : ; XnAn;Kg

where K is a key for the entire relation R.
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� We need to infer from F (written as EGD's, if
you like) the JD that says the join is lossless.
This JD has:

1. A conclusion row that has
\unsubscripted" symbols corresponding
to each attribute.

2. For each relation schema, a hypothesis
row that has the unsubscripted symbol
for an attribute if that attribute is in the
schema, and a unique symbol bj if b is the
symbol for the attribute and j is the row
number.

Example

Let F = fA ! B;C ! Dg. Recall the generated
decomposition is fAB;AC;CDg. The JD is:

A B C D

a b c1 d1
a b2 c d2
a3 b3 c d

a b c d

Proof That This JD Follows From the FD's

� We know K+ = R.

� An induction on the order in which attributes
are added to K+ says that in the row for
K, each subscripted symbol is equated to its
unsubscripted version.

✦ Key idea: if we use X ! A to add A to
K+, then in the row for K, all symbols
for the attributes in X have lost their
subscripts. Therefore, we may apply
X ! A to the rows for K and XA to
infer that aj = a, where j is the row
number for XA.

� As a result, the row for K eventually loses all
its subscripts, and becomes the conclusion row
of the JD.
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