
What is Database Theory?

A collection of studies, often connected to the
relational model of data.

� Restricted forms of logic, between SQL and
full �rst-order.

� Dependency theory: generalizing functional
dependencies.

� Conjunctive queries (CQ's): useful, decidable
special case.

� \Universal relations" �tting a database schema
into a single (virtual) relation.

1

Why Care?

A lot of this work was, quite frankly, done \for
the fun of it." However, it turns out to have
unexpected applications, as natural ideas often do:

� Information integration:

✦ Logic, CQ's, etc., used for expressing how
information sources �t together.

✦ Recent work using universal-relation
too | eliminates requirement that user
understand a lot about the integrated
schema.

� More powerful query languages.

✦ Recursion needed in repositories, other
applications.

✦ Database logic provided some important
ideas used in SQL3 standard: seminaive
evaluation, strati�ed negation.

� Potential application: constraints and triggers
are inherently recursive. When do they
converge?

2

Outline of Topics

1. Logic intro, especially logical rules (if-then),
dealing with negation.

✦ In database logic there is a special
semantics frowned upon by
Mathematicians, but it works.

2. Logic processing: optimizing collections of
rules that constitute a query.

✦ \Magic-sets" technique for recursive
queries.

3. Conjunctive queries: decidability of
containment, special cases.

4. Information-integration architectures: rule
expansion vs. systems that piece together
solutions to queries from logical de�nitions
of sources.

✦ Important CQ application.

5. Universal relation data model: answering
queries without knowing the schema.

3

6. Other stu� if I have time for it and/or there is
class interest:

a) Data mining of databases.

b) Materialized views, warehouses, data
cubes.

4

Course Requirements

1. The usual stu�: midterm, �nal, problem sets.

2. A project:

✦ Each student should attempt to
implement an algorithm for one of the
problems discussed in the class.

✦ Your choice, but you should pick
something that is combinatorially hard,
i.e., the problem is dealing e�ciently with
large cases.

✦ I'll suggest some problems as we go, and
keep a list on the Web page.

5

Review of Logic as a Query Language

Datalog programs are collections of rules, which are
Horn clauses or if-then expressions.

Example

The following rules express what is needed to
\make" a �le. It assumes these relations or EDB
(extensional database) predicates are available:

1. source(F): F is a source �le, i.e., stored in the
�le system.

2. includes(F;G): �le F includes �le G.

3. create(F;P;G): we create �le F by applying
process P to �le G.

req(F,F) :- source(F)

req(F,G) :- includes(F,G)

req(F,G) :- create(F,P,G)

req(F,G) :- req(F,H) & req(H,G)

6

Rules

Head :- Body

� :- is read \if"

� Atom = predicate applied to arguments.

� Head is atom.

� Body is logical AND of zero or more atoms.

� Atoms of body are called subgoals.

� Head predicate is IDB intensional database =
predicate de�ned by rules. Body subgoals may
have IDB or EDB predicates.

� Datalog program = collection of rules. One
IDB predicate is distinguished and represents
result of program.

7

Meaning of Rules

The head is true for its arguments whenever there
exist values for any local variables (those that
appear in the body, but not the head) that make
all the subgoals true.

Extensions

1. Negated subgoals. Example:

cycle(F) :- req(F,F) & NOT source(F)

2. Constants as arguments. Example:

req(F,"stdio.h") :- type(F,"cCode")

3. Arithmetic subgoals. Example:

composite(A) :- divides(B,A) &

B > 1 & B <> A

✦ Opposite of an arithmetic atom is a
relational atom.

8

Applying Rules (\Naive Evaluation")

Given an EDB:

1. Start with all IDB relations empty.

2. Instantiate (with constants) variables of all
rules in all possible ways. If all subgoals
become true, then infer that the head is true.

3. Repeat (2) in \rounds," as long as new IDB
facts can be inferred.

� (2) makes sense and is �nite, as long as
rules are safe = each variable that appears
anywhere in the rule appears in some
nonnegated, nonarithmetic subgoal of the
body.

� Limit of (1){(3) = Least �xed point of the
rules and EDB.

9

Seminaive Evaluation

� More e�cient approach to evaluating rules.

� Based on principle that if at round i a fact is
inferred for the �rst time, then we must have
used a rule in which one or more subgoals
were instantiated to facts that were inferred
on round i� 1.

�

Thus, for each IDB predicate p, keep both
relation P and relation �P ; the latter represents
the new facts for p inferred on the most recent
round.

10

Outline of SNE Algorithm

1. Initialize IDB relations by using only those
rules without IDB subgoals.

2. Initialize the �-IDB relations to be equal to
the corresponding IDB relations.

3. In one round, for each IDB predicate p:

a) Compute new �P by applying each rule
for p, but with one subgoal treated as a
�-IDB relation and the others treated as
the correct IDB or EDB relation. (Do for
all possible choices of the �-subgoal.)

b) Remove from new �P all facts that are
already in P .

c) P := P [�P .

4. Repeat (3) until no changes to any IDB
relation.

11

Example

(1) req(F,F) :- source(F)

(2) req(F,G) :- includes(F,G)

(3) req(F,G) :- create(F,P,G)

(4) req(F,G) :- req(F,H) & req(H,G)

� Assume EDB relations S, I, C and IDB
relation R, with obvious correspondence to
predicates.

� Initialize: R := �R := �#1=#2(S � S) [
I [�1;3(C).

� Iterate until �R = ;:

1. �R := �1;3(R ./ �R [�R ./ R)

2. �R := �R�R

3. R := R [�R

12

Models

Model of rules + EDB facts = set of atoms
selected to be true such that

1. An EDB fact is selected true i� it is in the
given EDB relation.

2. All rules become true under any instantiation
of the variables.

✦ Facts not stated true in the model are
assumed false.

✦ Only way to falsify a rule is to make each
subgoal true and the head false.

� Minimal model = model + no proper subset is
a model.

� For a Datalog program with only nonnegated,
relational atoms in the bodies, the unique

minimal model is what naive or seminaive
evaluation produces, i.e., the IDB facts we are
forced to deduce.

� Moreover, this LFP is reached after a �nite
number of rounds, if the EDB is �nite.

13

Function Symbols

Terms built from

1. Constants.
2. Variables.
3. Function symbols applied to terms as

arguments.

✦ Example:

addr
�
street(maple); number(101)

�

14

Example

Binary trees de�ned by

isTree(null)

isTree(node(L,T1,T2)) :-

label(L) &

isTree(T1) &

isTree(T2)

If label(a) and label(b) are true, infers facts like

isTree
�
node(a; null; null)

�

isTree
�
node

�
b; null; node(a; null; null)

��

� Application of rules as for Datalog: make all
possible instantiations of variables and infer
head if all subgoals are true.

� LFP is still unique minimal model, as long as
subgoals are relational, nonnegated.

� But LFP may be reached only after an in�nite
number of rounds.

15

