
1

More Clustering

CURE Algorithm
Non-Euclidean Approaches

2

The CURE Algorithm

Problem with BFR/k -means:
Assumes clusters are normally distributed
in each dimension.
And axes are fixed --- ellipses at an angle
are not OK.

CURE:
Assumes a Euclidean distance.
Allows clusters to assume any shape.

3

Example: Stanford Faculty Salaries

e e

e
e

e e

e

e e
e

e

h

h

h

h

h

h h

h

h
h h

hh

salary

age

4

Starting CURE

1. Pick a random sample of points that fit
in main memory.

2. Cluster these points hierarchically ---
group nearest points/clusters.

3. For each cluster, pick a sample of
points, as dispersed as possible.

4. From the sample, pick representatives
by moving them (say) 20% toward
the centroid of the cluster.

5

Example: Initial Clusters

e e

e
e

e e

e

e e
e

e

h

h

h

h

h

h

h h

h

h

h

h h

salary

age

6

Example: Pick Dispersed Points

e e

e
e

e e

e

e e
e

e

h

h

h

h

h

h

h h

h

h

h

h h

salary Pick (say) 4
remote points
for each
cluster.

age

7

Example: Pick Dispersed Points

e e

e
e

e e

e

e e
e

e

h

h

h

h

h

h

h h

h

h

h

h h

salary Move points
(say) 20%
toward the
centroid.

age

8

Finishing CURE

Now, visit each point p in the data set.
Place it in the “closest cluster.”

Normal definition of “closest”: that cluster
with the closest (to p) among all the
sample points of all the clusters.

9

Curse of Dimensionality

One way to look at it: in large-
dimension spaces, random vectors are
perpendicular. Why?

Argument #1: Lots of 2-dim subspaces.
There must be one where the vectors’
projections are almost perpendicular.
Argument #2: Expected value of cosine
of angle is 0.

10

Cosine of Angle Between
Random Vectors

Assume vectors emanate from the origin
(0,0,…,0).
Components are random in range [-1,1].
(a1,a2,…,an).(b1,b2,…,bn) has expected value
0 and a standard deviation that grows as √n.
But lengths of both vectors grow as √n.
So dot product around √n/ (√n * √n) = 1/√n.

11

Random Vectors --- Continued

Thus, a typical pair of vectors has an
angle whose cosine is on the order of
1/√n.
As n -> ∞, that’s 0; i.e., the angle is
about 90°.

12

Interesting Consequence

Suppose “random vectors are perpendicular,”
even in non-Euclidean spaces.
Suppose we know the distance from A to B,
say d (A,B), and we also know d (B,C), but
we don’t know d (A,C).
Suppose B and C are fairly close, say in the
same cluster.
What is d (A,C)?

13

Diagram of Situation

A

C

B

Approximately
perpendicular

Assuming points lie in a plane:
d (A,B)2 + d (B,C)2 = d (A,C)2

14

Important Point

Why do we assume AB is perpendicular
to AC, and not that either of the other
two angles are right-angles?

1. AB and AC are not “random vectors”; they
each go to points that are far away from A
and close to each other.

2. If AB is longer than AC, then it is angle
ACB that is right, but both ACB and ABC
are approximately right-angles.

15

Dealing With a Non-Euclidean
Space

Problem: clusters cannot be represented by
centroids.
Why? Because the “average” of “points”
might not be a point in the space.
Best substitute: the clustroid = point in the
cluster that minimizes the sum of the squares
of distances to the points in the cluster.

16

Representing Clusters in Non-
Euclidean Spaces

Recall BFR represents a Euclidean cluster
by N, SUM, and SUMSQ.
A non-Euclidean cluster is represented by:

N.
The clustroid.
Sum of the squares of the distances from
clustroid to all points in the cluster.

17

Example of CoD Use

Problem: in non-Euclidean space, we
want to decide whether to merge two
clusters.

Each cluster represented by N, clustroid,
and “SUMSQ.”
Also, SUMSQ for each point in the cluster,
even if it is not the clustroid.

Merge if SUMSQ for new cluster is “low.”

18

Estimating SUMSQ

p

other clust-
roid, b

p ’s clustroid, c

19

Suppose p Were the Clustroid
of Combined Cluster

It’s SUMSQ would be the sum of:
1. Old SUMSQ(p) [for old cluster containing p].
2. SUMSQ(b) plus d (p,b)2 times number of

points in b ’s cluster.

Critical point: vector p ->b assumed
perpendicular to vectors from b to all
other points in its cluster --- justifies (2).

20

Combining Clusters --- Continued

We can thus estimate SUMSQ for each
point in the combined cluster. Take the
point with the least SUMSQ as the
clustroid of the new cluster --- provided
that SUMSQ is small enough.

21

The GRGPF Algorithm

From Ganti et al. --- see reading list.
Works for non-Euclidean distances.
Works for massive (disk-resident) data.
Hierarchical clustering.
Clusters are grouped into a tree of disk
blocks (like a B-tree or R-tree).

22

Information Retained About a
Cluster

1. N, clustroid, SUMSQ.
2. The p points closest to the clustroid,

and their values of SUMSQ.
3. The p points of the cluster that are

furthest away from the clustroid, and
their SUMSQ’s.

23

At Interior Nodes of the Tree

Interior nodes have samples of the
clustroids of the clusters found at
descendant leaves of this node.
Try to keep clusters on one leaf block
close, descendants of a level-1 node close,
etc.
Interior part of tree kept in main memory.

24

Picture of the Tree

cluster data cluster data

samples

on disk

main
memory

25

Initialization

Take a main-memory sample of points.
Organize them into clusters
hierarchically.
Build the initial tree, with level-1 interior
nodes representing clusters of clusters,
and so on.
All other points are inserted into this
tree.

26

Inserting Points

Start at the root.
At each interior node, visit one or more
children that have sample clustroids
near the inserted point.
At the leaves, insert the point into the
cluster with the nearest clustroid.

27

Updating Cluster Data

Suppose we add point X to a cluster.
Increase count N by 1.
For each of the 2p + 1 points Y whose
SUMSQ is stored, add d (X,Y)2.
Estimate SUMSQ for X.

28

Estimating SUMSQ(X)

If C is the clustroid, SUMSQ(X) is, by
the CoD assumption:
Nd (X,C)2 + SUMSQ(C)

Based on assumption that vector from X
to C is perpendicular to vectors from C to
all the other nodes of the cluster.

This value may allow X to replace one
of the closest or furthest nodes.

29

Possible Modification to
Cluster Data

There may be a new clustroid --- one of
the p closest points --- because of the
addition of X.
Eventually, the clustroid may migrate
out of the p closest points, and the
entire representation of the cluster
needs to be recomputed.

30

Splitting and Merging Clusters

Maintain a threshold for the radius of a
cluster = √(SUMSQ/N).
Split a cluster whose radius is too large.
Adding clusters may overflow leaf
blocks, and require splits of blocks up
the tree.

Splitting is similar to a B-tree.
But try to keep locality of clusters.

31

Splitting and Merging --- (2)

The problem case is when we have split
so much that the tree no longer fits in
main memory.
Raise the threshold on radius and
merge clusters that are sufficiently
close.

32

Merging Clusters

Suppose there are nearby clusters with
clustroids C and D, and we want to
consider merging them.
Assume that the clustroid of the
combined cluster will be one of the p
furthest points from the clustroid of one
of those clusters.

33

Merging --- (2)

Compute SUMSQ(X) [from the cluster
of C] for the combined cluster by
summing:

1. SUMSQ(X) from its own cluster.
2. SUMSQ(D) + N [d (X,C)2 + d (C,D)2].

Uses the CoD to reason that the distance
from X to each point in the other cluster
goes to C, makes a right angle to D, and
another right angle to the point.

34

Merging --- Concluded

Pick as the clustroid for the combined
cluster that point with the least SUMSQ.
But if this SUMSQ is too large, do not
merge clusters.
Hope you get enough mergers to fit the
tree in main memory.

35

Fastmap

Not a clustering algorithm --- rather, a
method for applying multidimensional
scaling.

That is, mapping the points onto a small-
dimension space, so the CoD does not
apply.

36

Fastmap --- (2)

Assumes non-Euclidean space.
But like GRGFP pretends it is working in 2-
dimensional Euclidean space when it is
convenient to do so.

Goal: map n points in much less than
O(n 2) time.

I.e., you cannot compute distances
between each pair of points and place
points in k-dim. space to minimize error.

37

Fastmap --- Key Idea

Create a “dimension” in non-Euclidean
space by:

1. Pick a pair of points A and B that are far
apart.

Start with random A; pick most distant B.

2. Treat AB as an “axis” and project all
points onto AB, using the law of cosines.

38

Projecting Point C Onto AB
C

d(B,C)

d(A,B)

d(A,C)

BA
x

x = [d 2(A,C) + d 2(A,B) – d 2(B,C)]/2d (A,B)

39

Revising Distances

Having computed the position of every
point along the pseudo-axis AB, we
need to lower the distances between
points in the “other dimensions.”

40

Picture

D

dold(C,D)
dnew(C,D) =

√dold(C,D)2 – (x-y)2C

x
A B

y

41

But …

We can’t afford to compute new
distances for each pseudo-dimension.

It would take O(n 2) time.

Rather, for each pseudo-dimension,
store the position along the pseudo-axis
for each point, and adjust the distance
between points by square-subtract-sqrt
only when needed.

I.e., one of the points is an axis-end.

42

Fastmap --- Summary

Pick a number of dimensions k.
FOR i = 1 TO k DO BEGIN

Pick a pseudo-axis AiBi;

Compute projection of each

point onto this pseudo-axis;

END;

Each step is O(ni); total O(nk 2).

	More Clustering
	The CURE Algorithm
	Example: Stanford Faculty Salaries
	Starting CURE
	Example: Initial Clusters
	Example: Pick Dispersed Points
	Example: Pick Dispersed Points
	Finishing CURE
	Curse of Dimensionality
	Cosine of Angle Between Random Vectors
	Random Vectors --- Continued
	Interesting Consequence
	Diagram of Situation
	Important Point
	Dealing With a Non-Euclidean Space
	Representing Clusters in Non-Euclidean Spaces
	Example of CoD Use
	Estimating SUMSQ
	Suppose p Were the Clustroid of Combined Cluster
	Combining Clusters --- Continued
	The GRGPF Algorithm
	Information Retained About a Cluster
	At Interior Nodes of the Tree
	Picture of the Tree
	Initialization
	Inserting Points
	Updating Cluster Data
	Estimating SUMSQ(X)
	Possible Modification to Cluster Data
	Splitting and Merging Clusters
	Splitting and Merging --- (2)
	Merging Clusters
	Merging --- (2)
	Merging --- Concluded
	Fastmap
	Fastmap --- (2)
	Fastmap --- Key Idea
	Projecting Point C Onto AB
	Revising Distances
	Picture
	But …
	Fastmap --- Summary

