More Clustering

CURE Algorithm
Non-Euclidean Approaches



The CURE Algorithm

@ Problem with BFR/ 4 -means:

* Assumes clusters are normally distributed
in each dimension.

* And axes are fixed --- ellipses at an angle
are not OK.

¢ CURE:

+ Assumes a Euclidean distance.
+ Allows clusters to assume any shape.



Example: Stanford Faculty Salaries
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Starting CURE

. Pick @ random sample of points that fit
INn Main memory.

. Cluster these points hierarchically ---
group nearest points/clusters.

. For each cluster, pick a sample of
points, as dispersed as possible.

. From the sample, pick representatives
by moving them (say) 20% toward
the centroid of the cluster.



Initial Clusters
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Example: Pick Dispersed Points

Pick (say) 4
remote points
for each
cluster.
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Example: Pick Dispersed Points
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Move points
(say) 20%
toward the
centroid.



Finishing CURE

@ Now, visit each point p in the data set.

& Place it in the “closest cluster.”

* Normal definition of “closest™: that cluster
with the closest (to p ) among all the
sample points of all the clusters.



Curse of Dimensionality

€ One way to look at it: in large-
dimension spaces, random vectors are
perpendicular. Why?
€ Argument #1: Lots of 2-dim subspaces.

There must be one where the vectors’
projections are almost perpendicular.

€ Argument #2: Expected value of cosine
of angle is 0.



Cosine of Angle Between

Random Vectors
€ Assume vectors emanate from the origin
(0,0,...,0).
€ Components are random in range [-1,1].

®(a,a,..4a,).(b,b,..,b0) has expected value
0 and a standard deviation that grows as V.

€ But lengths of both vectors grow as vn.
€ So dot product around v/ (Vn * Vn) = 1/Vn.
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Random Vectors --- Continued

€ Thus, a typical pair of vectors has an

angle whose cosine is on the order of
1/vn.

®As n-> oo, that's 0; i.e., the angle is
about 90°.

11



Interesting Consequence

@ Suppose “random vectors are perpendicular,”
even in non-Euclidean spaces.

@ Suppose we know the distance from Ato B,
say d (A,B), and we also know d (B,C), but
we don‘t know d (A,C).

®Suppose B and C are fairly close, say in the
same cluster.

®What is d(A4,C)?
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Diagram of Situation

Approximately

5 perpendicular

Assuming points lie in a plane:
d(AB)Y + d(BC)?=d(AC)>

C
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Important Point

€ Why do we assume AB is perpendicular
to AC, and not that either of the other
two angles are right-angles?

1. AB and AC are not “random vectors”; they
each go to points that are far away from A
and close to each other.

2. If AB is longer than AC, then it is angle
ACB that is right, but both ACB and ABC
are approximately right-angles.
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Dealing With a Non-Euclidean
Space

@ Problem: clusters cannot be represented by
centroids.

& Why? Because the “average” of “points”
might not be a point in the space.

@ Best substitute: the clustroid = point in the
cluster that minimizes the sum of the squares
of distances to the points in the cluster.
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Representing Clusters in Non-
Euclidean Spaces

® Recall BFR represents a Euclidean cluster
by N, SUM, and SUMSAQ.

® A non-Euclidean cluster is represented by:
* N
* The clustroid.

+ Sum of the squares of the distances from
clustroid to all points in the cluster.
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Example of CoD Use

@ Problem: in non-Euclidean space, we
want to decide whether to merge two
clusters.

* Each cluster represented by A, clustroid,
and “SUMSQ.”

+ Also, SUMSQ for each point in the cluster,
even if it is not the clustroid.

® Merge if SUMSQ for new cluster is “low.”
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Estimating SUMSQ

p's clustroid, ¢ \ Ather clust-

/@ X




Suppose p Were the Clustroid
of Combined Cluster

& It's SUMSQ would be the sum of:
1. Old SUMSQ(p) [for old cluster containing p].

2. SUMSQ(b) plus d (p,b)? times number of
points in 6 's cluster.

@ Critical point: vector p->5b6 assumed
perpendicular to vectors from 6 to all
other points in its cluster --- justifies (2).
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Combining Clusters --- Continued

€ We can thus estimate SUMSQ for each
point in the combined cluster. Take the
point with the least SUMSQ as the
clustroid of the new cluster --- provided

that SUMSQ is small enough.
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The GRGPF Algorithm

€ From Ganti et al. --- see reading list.

@ Works for non-Euclidean distances.

@® Works for massive (disk-resident) data.
® Hierarchical clustering.

@ Clusters are grouped into a tree of disk
blocks (like a B-tree or R-tree).
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Information Retained About a
Cluster

1. N, clustroid, SUMSAQ.

2. The p points closest to the clustroid,
and their values of SUMSQ.

3. The p points of the cluster that are
furthest away from the clustroid, and
their SUMSQ's.
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At Interior Nodes of the Tree

@ Interior nodes have samples of the
clustroids of the clusters found at
descendant leaves of this node.

& Try to keep clusters on one leaf block
close, descendants of a level-1 node close,
etc.

@ Interior part of tree kept in main memory.
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Initialization

€ Take a main-memory sample of points.

# Organize them into clusters
hierarchically.

€ Build the initial tree, with level-1 interior
nodes representing clusters of clusters,
and so on.

@ All other points are inserted into this
tree.
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Inserting Points

& Start at the root.

@ At each interior node, visit one or more
children that have sample clustroids
near the inserted point.

@ At the leaves, insert the point into the
cluster with the nearest clustroid.
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Updating Cluster Data

€ Suppose we add point X to a cluster.
@ Increase count V by 1.

@ For each of the 2p + 1 points Y whose
SUMSQ is stored, add d (X Y )2

@ Estimate SUMSQ for X.
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Estimating SUMSQ(X")

@ If C is the clustroid, SUMSQ(X) is, by
the CoD assumption:
Nd (X C)? + SUMSQ(C)

+ Based on assumption that vector from X
to C is perpendicular to vectors from C to
all the other nodes of the cluster.

@ This value may allow X to replace one
of the closest or furthest nodes.
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Possible Modification to
Cluster Data

& There may be a new clustroid --- one of
the p closest points --- because of the
addition of X.

# Eventually, the clustroid may migrate
out of the p closest points, and the
entire representation of the cluster
needs to be recomputed.
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Splitting and Merging Clusters

& Maintain a threshold for the radius of a
cluster = V(SUMSQ/N).

@ Split a cluster whose radius is too large.

# Adding clusters may overflow leaf
blocks, and require splits of blocks up
the tree.

+ Splitting is similar to a B-tree.
* But try to keep locality of clusters.
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Splitting and Merging --- (2)

€ The problem case is when we have split
so much that the tree no longer fits in
main memory.

& Raise the threshold on radius and
merge clusters that are sufficiently
close.

31



Merging Clusters

@ Suppose there are nearby clusters with
clustroids C and D, and we want to
consider merging them.

@ Assume that the clustroid of the
combined cluster will be one of the p
furthest points from the clustroid of one
of those clusters.
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Merging --- (2)

& Compute SUMSQ(X) [from the cluster
of C] for the combined cluster by
summing:

1. SUMSQ(X) from its own cluster.
2. SUMSQ(D) + N[d(X C)? + d(CD)?4].

€ Uses the CoD to reason that the distance
from X to each point in the other cluster
goes to ¢, makes a right angle to D, and
another right angle to the point.
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Merging --- Concluded

@ Pick as the clustroid for the combined
cluster that point with the least SUMSQ.

€ But if this SUMSQ is too large, do not
merge clusters.

® Hope you get enough mergers to fit the
tree in main memory.
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Fastmap

@ Not a clustering algorithm --- rather, a
method for applying multidimensional
scaling.

* That is, mapping the points onto a small-
dimension space, so the CoD does not
apply.
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Fastmap --- (2)

€ Assumes non-Euclidean space.

+ But like GRGFP pretends it is working in 2-
dimensional Euclidean space when it is
convenient to do so.

@ Goal: map n points in much less than
O(n ?) time.
+ [.e., you cannot compute distances

between each pair of points and place
points in k-dim. space to minimize error.
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Fastmap --- Key Idea

€ Create a “dimension” in non-Euclidean
space by:
1. Pick a pair of points A and B that are far

apart.
€ Start with random A; pick most distant B.

2. Treat AB as an “axis” and project all
points onto AB, using the law of cosines.
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Projecting Point C Onto AB

C

d(A,C) d(B,C)

, d(A,B) -

— X —

X = [dZ(AIC) + dz(A,B) - dz(B,C)]/Zd(A,B)
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Revising Distances

€ Having computed the position of every
point along the pseudo-axis AB, we
need to lower the distances between
points in the “other dimensions.”
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Picture

D

Oé)ld(cl D)
a|l1ew(Cl D) =

: Vdy4(C,D)? = (x-y)?
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But ...

& We can't afford to compute new
distances for each pseudo-dimension.

+ It would take O(n2) time.

® Rather, for each pseudo-dimension,
store the position along the pseudo-axis
for each point, and adjust the distance
between points by square-subtract-sqgrt
only when needed.

+ I.e., one of the points is an axis-end.
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Fastmap --- Summary

® Pick a number of dimensions «.
FORI =1 TO k DO BEG N

Pick a pseudo-axis AB;
Conmput e proj ection of each
point onto this pseudo-axis;
END;

@ Each step is O(n/); total O(nk 2).
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