
Finding Progression Stages in Time-evolving
Event Sequences

Jaewon Yang† Julian McAuley† Jure Leskovec† Paea LePendu‡ Nigam Shah‡
† Computer Science, Stanford University, {jayang, jmcauley, jure}@cs.stanford.edu
‡ Biomedical Informatics, Stanford University, {plependu, nigam}@stanford.edu

ABSTRACT
Event sequences, such as patients’ medical histories or users’ se-
quences of product reviews, trace how individuals progress over
time. Identifying common patterns, or progression stages, in such
event sequences is a challenging task because not every individual
follows the same evolutionary pattern, stages may have very differ-
ent lengths, and individuals may progress at different rates.

In this paper, we develop a model-based method for discover-
ing common progression stages in general event sequences. We
develop a generative model in which each sequence belongs to a
class, and sequences from a given class pass through a common set
of stages, where each sequence evolves at its own rate. We then de-
velop a scalable algorithm to infer classes of sequences, while also
segmenting each sequence into a set of stages. We evaluate our
method on event sequences, ranging from patients’ medical his-
tories to online news and navigational traces from the Web. The
evaluation shows that our methodology can predict future events in
a sequence, while also accurately inferring meaningful progression
stages, and effectively grouping sequences based on common pro-
gression patterns. More generally, our methodology allows us to
reason about how event sequences progress over time, by discov-
ering patterns and categories of temporal evolution in large-scale
datasets of events.
Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining
Keywords: User modeling, time series, event sequences

1. INTRODUCTION
A variety of natural processes generate sequences of data whose

complex temporal dynamics need to be modeled. Such event se-
quences, in which individual entities generate a series of observa-
tions drawn from a finite categorical vocabulary, are ubiquitous in
many applications. For example, an event sequence could repre-
sent a product purchasing history of an individual, a person’s In-
ternet browsing history, or a sequence of symptoms exhibited by a
patient.

Event sequence data has two natural and interesting character-
istics: The first is that sequences progress through distinct stages;

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2744-2/14/04.
http://dx.doi.org/10.1145/2566486.2568044.

Automobile

Dog
Apple

EnglishdLanguage

Aircraft

Earth
Moon

Astronomy
Apollo11

SpacedShuttle SolardSystem
Planet
Sun

Galaxy
Pluto

U.S.dPresidents
GeorgedW.dBush

U.S.dState
NewdYorkdCity

U.S.dIndependance

UniteddStates

Florida

U.S.dConstitution

Mexico

WashingtondD.C

England
Germany

Christianity
SouthdAmerica

China

UniteddStates
Apollo11
Science

EnglishdLanguage
UniteddNations

Earth

NorthdAmerica
Europe

Figure 1: Examples of the progression stages and the classes
(Astronomy and U.S.A.) that we learn from Web navigation
trajectories in the online game Wikispeedia. The top five most
frequently visited pages are shown for each stage. Players start
at some Wikipedia page and then move to the pages related to
U.S. In the third stage, red players move towards astronomy-
related pages, while blue players navigate towards U.S.-related
topics. Both reach their corresponding goal pages in stage four.

the second is that there may be many different types or classes of
progression.

Progression stages: Patterns of human behavior are generally
not static as individuals evolve over time. Continuing the above ex-
amples, as users acquire more products, their tastes will change and
thus, their preferences will go through a series of “expertise” lev-
els [16]; or, as users search for information on the Web, their nav-
igation strategies will progress through a series of phases [25]; fi-
nally, as a patient’s disease progresses through various stages, they
will exhibit different sets of symptoms. Understanding and mod-
eling such sequences requires that we understand the mechanisms
that cause them to change over time. In particular, sequences evolve
through a series of progressing stages or phases. Other examples
of progression sequences range from living cells that undergo vari-
ous stages of mitosis to chess games that progress through several
natural stages, like the opening, middle and the end of the game.

Classes of progression: In addition to understanding the various
stages through which an individual sequence progresses, it is also
necessary to categorize or group sequences according to how their
temporal behavior evolves. For example, given a large set of prod-
uct purchasing sequences of individuals, classes could represent
groups of people that undergo similar evolution of their product
purchasing patterns, e.g., some users may gradually develop a taste
for action movies, while others progress toward drama. Similarly,
different patients may progress through stages of a disease differ-
ently depending on their age or gender [10]. Here classes could
correspond to groups of people with a common disease or disease
progression pattern.

Thus, in order to understand the temporal dynamics of event se-
quences it is crucial to solve two tasks. The first task requires
us to identify different stages through which sequences progress
and then segment individual sequences according to the discovered
stages. The second tasks requires us to model different categories
or classes of sequences. That is, to model classes of sequences that
evolve according to different patterns of events. However, we have
to consider both tasks simultaneously in order to better capture the
diversity present in real sequence data.

Models for identifying progression stages are useful when solv-
ing a variety of tasks. Firstly, with richer models of temporal dy-
namics, we are better able to predict future events, such as the next
product a person will consume, or the next symptom a patient will
exhibit. Secondly, the stages and categories that we discover may
themselves be meaningful. For instance, such models can help us
to predict a patient’s disease stage more accurately than is possible
by examining their symptoms in isolation.

Modeling these types of temporal dynamics is a fundamentally
difficult problem for a variety of reasons. Firstly, not every indi-
vidual sequence evolves at the same rate. In addition, not every
sequence will follow the same progression path or even progress
through the same set of stages. Moreover, data may only be par-
tially observed, e.g., our first observation of a patient’s symptoms
may occur only after they already exhibit advanced symptoms. Fi-
nally, as there may be many different types of progression, se-
quences have to be both individually classified as well as segmented.

A variety of methods exist to model event sequences, though the
above complications present issues for many existing models. Ap-
proaches based on mining frequently occurring subsequences [2,
18, 26] are not appropriate for this task, as the level of noise and
large state-spaces mean that any specific pattern is extremely un-
likely to appear repeatedly. Hidden Markov Models capture how
latent states change [5, 7, 19, 22], though they typically assume that
all sequences share the same set of latent states and thus progress
in the same way. Other models of time-varying data, which are
state-of-the-art for tasks such as movie recommendation on Netflix
[9, 15], generally assume that users evolve according to a “global
clock,”, i.e., their progression is tied to the calendar date. In con-
trast, modeling patient records (for example) requires that each in-
dividual progresses according to his or her own personal timescale.
It is because of these above difficulties that a new model is required.

Present work: Finding progression stages. In this paper, we con-
sider a broad definition of categorical event sequences: At a basic
level, we model ordered sets of events drawn from a finite vocab-
ulary. This level of generality allows us to model data from a va-
riety of sources, including product reviews, browsing logs, media
streams, and medical records.

We develop scalable methods to discover natural patterns of pro-
gression in time-evolving categorical sequence data. We achieve
this by grouping sequences into different classes, based on common
temporal patterns of events, while also individually segmenting se-
quences into automatically discovered progression stages. Both
of these tasks are performed as part of a single optimization pro-
cedure, so that we simultaneously learn the categories and iden-
tify the progression stages of individual sequences. Our model is
highly flexible in terms of how individual sequences progress—
for instance, not every sequence needs to progress through every
stage, and each individual sequence may progress through stages at
a different rate; this flexibility is essential to capture the noise and
variability present in real data.

For example, Figure 1 illustrates the output of our algorithm
when applied to human browsing traces on Wikipedia. We discover
two sequence classes: people trying to reach pages about astron-

(a) Input sequences

Class 1

Class 2

Stage 1 Stage 3Stage 2 Stage 4

(b) Output

Figure 2: Problem definition: Given input event sequences (a),
we aim to categorize sequences into classes based on how they
evolve, and we divide each sequence into progression stages (b).

omy and people navigating towards U.S.-related pages. Simultane-
ously, we discover four stages of browsing behavior through which
users progress when navigating towards a particular webpage.

More broadly, we apply our models to real-world event sequences
from a variety of sources. We model people’s consumption patterns
on product review websites, such as RateBeer.com; we model peo-
ple’s browsing behavior using log data from Wikispeedia (a game
that requires users to navigate Wikipedia pages [25]); and we apply
our models to medical data of patients with chronic kidney disease.

In terms of experiments, we focus on three different aspects: pre-
dicting individual events, inferring progression stages, and group-
ing sequences into classes. For each aspect, we add qualitative
analysis to show that our models help us to better understand and
reason about the temporal dynamics of sequence data. First, we
evaluate the ability of our method to predict future events in se-
quence data, e.g., the next product a person will consume, the next
page that she will navigate to, or the next symptom that she will ex-
hibit. We observe that our method achieves a 30% gain in accuracy
compared to existing methods for future-event prediction.

Second, we evaluate the accuracy and usefulness of the stages
themselves, which we do by comparing them to known progres-
sion stages of patients with chronic kidney disease. The evaluation
shows that our method can correctly estimate at what stage a symp-
tom will appear, with a rank correlation higher than 0.8. We also
analyze the stages that we infer in other datasets and observe that
the speed at which a sequence progresses between stages signals
the longevity of the sequence. For example, reviewers who ad-
vance too quickly or too slowly tend to produce fewer reviews in
total compared to those who advance moderately.

Third, in our qualitative analysis, we find that the classes of se-
quences that we discover from navigation trajectories on Wikipedia
correspond to different navigation strategies. We also discover that
new users on product review websites initially consume similar
products, before gradually “fanning out” and developing their own
tastes, and then finally converging upon common subsets of prod-
ucts favored by “experts” in the community.

The remainder of this paper is organized as follows. In Section
2 we propose our model. Section 3 describes the data. Section
4 shows our experiments on event prediction, Section 5 discusses
experiments on progression stages, and Section 6 presents experi-
ments on classes of sequences. We discuss related work and con-
clude in Sections 7 and 8.

2. PROPOSED METHOD
Our goal in this paper is to discover the stages of progression that

are common to a given set of event sequences. To achieve this goal,
we develop a method based on a conceptual probabilistic model,
which specifies how observed event sequences are generated from
latent stages. We formulate the problem, develop the generative
model, and then show how the latent stages of this model can be
efficiently learned.

2.1 Problem Definition
We begin by defining the problem of finding progression stages.

We assume that we are given a set of event sequences of different
lengths, and we aim to infer their progression stages and classes.
Our problem formulation is based on the following intuitions.

First, each event sequence progresses through a set of latent,
discrete-valued “stages” over time, and observed events are gen-
erated depending on the sequence’s current stage. Second, not only
does each sequence have a different length, but the duration of
progression stages for each sequence can be substantially differ-
ent; some stages progress slowly, while others do so more quickly.
Moreover, sequences may not progress through all stages, i.e., they
may start and finish at some intermediate stage.

The final intuition in our problem is that for any set of event
sequences, there are multiple possible patterns of progression. To
model different types of progression, we assume that there are la-
tent classes or categories of event sequences, where sequences be-
longing to the same class progress through events in a similar way.
We then aim to automatically “cluster” or “group” sequences to
identify such common patterns of progression. In this way, we de-
velop an unsupervised approach to clustering sequence progression
data, by identifying sets of event sequences that follow common
trajectories.

We formulate the problem of event sequence segmentation and
classification as follows:

PROBLEM 1. Given a set of event sequences, the problem of
sequence segmentation and classification is to:

• find the class that each sequence belongs to; and

• assign each event to a stage, with stage assignments being
non-decreasing over time.

We illustrate the process in Fig. 2, and describe it in detail below.

2.2 Model Description
Here, we describe the generative process that we develop for

modeling how observed event sequences are generated from a set
of underlying latent progression stages.

We denote each event sequence by xi, i = 1, . . . , N , and the
j-th event of xi (j ordered by time) by a categorical-valued xij ∈
{1, . . . ,M} where N is the number of sequences and M is the
number of possible events. Each sequence may have a different
length; we denote by L the sum of the lengths of all sequences
(i.e., L =

∑
i |xi|). We also assume that there are C classes of

sequences and that each class divided into K stages. We assume
for simplicity that all classes have K stages, though our model can
easily be adapted to accommodate a different number of stages per
class.

Each sequence xi belongs to a single class ci ∈ {1, . . . , C}. For
each event xij ∈ xi, we define sij ∈ {1, . . . ,K} to be the stage of
the sequence xi at time j. Stages sij are a non-decreasing function
of time, i.e., a sequence never progresses “backward”.

∀i, j, k j ≥ k ⇒ sij ≥ sik. (1)

From a modeling perspective, this constraint means that we cap-
ture patterns of temporal evolution that relate to the sequences of
events, but are not tied to the exact time, or overall trends in the
dataset. Also note that we do not require that any sequence xi
should progress through all stages: some sequences may begin
from intermediate stages, while some other sequences may end
without reaching the last stage.

Given class ci and stages sij for sequence xi, we now specify
how individual events xij are generated. We employ a very sim-
ple generative process where xij is independently drawn from a
multinomial distribution with parameter Θ(ci, sij) ∈ RM :

xij ∼ Multinomial(Θ(ci, sij))

Here, each Θ(ci, sij) represents separate distribution of events for
a given stage sij and class ci. This way, we can ensure that se-
quences from the same class should have similar sets of events dur-
ing the same stage.

Last, we also assume that Θ(ci, sij) is drawn from a uniform
Dirichlet distribution with a hyperparameter λ:

Θ(ci, sij) ∼ Dirichlet(λ).

Note that our approach can be generalized for generating xij with
more sophisticated models, e.g., we could model xij in each stage
and each class using Latent Dirichlet Allocation (LDA) [4]. How-
ever, we found that our simple multinomial process works reliably
in practice and allows us to fit the model very efficiently.

2.3 Inferring Progression Stages
We now explain how we can learn the stages of progression in

event sequences based on our model. We are given a set of event
sequences {xi}. We also assume that we are given the number of
classes C and the number of stages K. (We will explain later how
to estimate values for C and K.) Our goal is to learn for each se-
quence xi the class membership ci of the sequence and the stage
assignments sij for each event xij in the sequence. We achieve this
by fitting the model, i.e., we find classes ci, stages sij , and multi-
nomial distributions Θ = {Θ(p, q)|p = 1, ..., C, q = 1, ...,K} by
maximizing the log likelihood:

l(Θ, {ci}, {sij}; {xi}) = logP ({xi}|Θ, {ci}, {sij})

Because variables xij are conditionally independent of each other
given {ci}, {sij}, the log-likelihood becomes

logP ({xi}|Θ, {ci}, {sij}) =
∑
i,j

logP (xij |Θ(ci, sij)).

Thus, we aim to solve the following optimization problem:

argmax
{ci},{sij}↗j ,Θ

∑
i,j

logP (xij |Θ(ci, sij)) (2)

where {sij} ↗j is the monotonicity constraint in Eq. 1.
Optimizing Eq. 2 jointly for all sets of variables is highly chal-

lenging, since the problem is combinatorial and non-convex. We
note that our formulation can be naturally cast in the framework of
Expectation-Maximization (EM), where we compute soft assign-
ments of the stages and the classes at one step, and then update Θ
using these soft assignments. We note that we have experimented
with the EM algorithm and found that EM converges prohibitively
slowly. Thus we employ a coordinate ascent strategy, which is
1,000 times faster than EM in our experience, while yielding re-
sults of similar quality. Our coordinate ascent strategy is described
below.

As illustrated in Figure 3, we iteratively update subsets of vari-
ables. First, we update Θ while keeping {ci} and {sij} fixed
(Fig. 3 (a)). Second, we update {ci} and {sij} with Θ fixed (Fig. 3
(b)). We iterate these two steps until convergence, i.e., until the
classes and the stages that we learn do not change between succes-
sive iterations.

Updating Θ. With stages {sij} and classes {ci} fixed, we aim
to find parameters Θ that maximize the log-likelihood l(Θ) =

Class 1

Class 2

Stage 1 Stage 3Stage 2 Stage 4

(a) Updating stages (b) Updating Θ

Figure 3: Method description. (a) Update of stage and class
assignments. (b) Update of model parameter Θ for each class
and stage. We iterate the two steps until convergence.

logP ({xi}|Θ, {ci}, {sij}):

argmax
Θ

l(Θ) = logP ({xi}|Θ, {ci}, {sij}).

Because variables xij are conditionally independent of each other
given {ci}, {sij}, l(Θ) can be represented by summing log-probab-
ilities for xij :

l(Θ) =
∑
i,j

logP (xij |ci, sij ,Θ) =
∑
i,j

logP (xij |Θ(ci, sij)).

Note that P (xij |Θ(ci, sij)) does not depend on Θ(p, q) if p 6= ci
or q 6= sij . Thus, l(Θ) is separable with respect to Θ(p, q):

l(Θ) =

C∑
p=1

K∑
q=1

l(Θ(p, q)),

l(Θ(p, q)) =
∑
i,j

1{ci = p ∧ sij = q} logP (xij |Θ(p, q)),

where 1 denotes an indicator function. We find the optimal value
of Θ(p, q) by maximizing l(Θ(p, q)). Because P (xij |Θ(p, q)) is
a multinomial distribution, the optimal value of Θ(p, q) is the same
as the empirical probability smoothed by the Dirichlet parameter λ:

Θ(p, q)r =
λ+

∑
i,j 1{ci = p ∧ sij = q ∧ xij = r}

Mλ+
∑

i,j 1{ci = p ∧ sij = q}
r = 1, ...,M

Updating stages. Next, we describe how to update classes {ci}
and stages {sij} while keeping Θ fixed. This procedure means
assigning each sequence xi to a class ci and assigning each event
xij to a stage sij , such that the log-likelihood for xi is maximized
(subject to the monotonicity constraint of Eq. 1). We solve the
following optimization problem for each sequence xi:

argmax
ci,{sij}↗j

∑
j

logP (xij |Θ(ci, sij)). (3)

To solve Eq. 3, we first compute the best assignment of stages
(and the corresponding value of the maximized likelihood) for each
value for class ci = 1, ..., C. We then choose the class assignment
that yields the highest likelihood. Thus, for each class ci, we solve:

l(ci) = max
{sij}↗j

∑
j

logP (xij |Θ(ci, sij)).

Optimizing sij subject to a monotonicity constraint can be effi-
ciently solved using dynamic programming via a transformation to
the Longest Common Subsequence problem [3], whose complexity
is bilinear in the number of stages and the number of events in the
sequence. Then, we choose the optimal class ci:

argmax
ci

l(ci).

Figure 4: Our dynamic programming procedure for fitting
stages. Each row represents a stage and columns represent
events in a sequence. Given a particular sequence u (columns;
in this case, with eight events xui) we fit their optimal progres-
sion through four stages (rows) using dynamic programming;
this is equivalent to finding the shortest path from the “start”
to the “end” of the above graphs. This procedure is repeated
for each class cu to choose the optimal class/path combination.

Our dynamic programming procedure is depicted in Figure 4.
Here we show the progression of a user with eight events (columns)
through four stages (rows). The optimal path from the optimal class
is used to choose the user’s class label and progression sequence.

Next, we briefly describe the dynamic programming procedure
for updating sij for a given class ci (i.e., finding the black path in
Fig. 4). We compute the optimal cost g(j, s) to reach j-th event
at the s-th stage by forward recursion, from the fact that paths to
g(j, s) go through either g(j−1, s−1) (i.e., going up) or g(j−1, s)
(i.e., staying at the same level):

g(j, s) = max(g(j−1, s)+Cost(j, s), g(j−1, s−1)+Cost(j, s)),

where Cost(j, s) = logP (xij |Θ(ci, s)). When computing g(j, s),
we also record which action between “going up” or “staying level”
is optimal. After computing g(j, s) for all j and s, we can find the
optimal path by finding the optimal cost and action from the end of
the sequence.

Last, we also note the complexity of our fitting algorithm. Up-
dating stages for a given sequence xi and class ci requires compu-
tation linear in the number of stages and the number of events in the
sequence (O(K|xi|)). This means that updating stages and classes
for all sequences requires O(KLC) operations. Updating Θ has
complexity of O(L), which is negligible compared to O(KLC).
Thus, the complexity of one full iteration is O(KLC), which is
linear in the total number of events in the data. The code for our
model is available at http://snap.stanford.edu/snap.

Choosing the number of stages and classes. When describing the
model, we assumed that the number of classes C and the number
of stages K are given a priori, which is true in some cases where
domain knowledge may provide good estimates. In many cases,
however, such domain knowledge may not be available. Thus, we
provide a way to determine the number of classes and the number
of stages automatically.

To automatically choose the number of stages and classes, we
examine different values of C and K, and choose values that max-
imize the goodness-of-fit via cross-validation likelihood. We split
each sequence into 90% training set and 10% test sets It uniformly
at random, and then fit the classes and stages of the training part of
the sequence. Then, for each event xij in the test set It, we mea-
sure the probability of observing xij assuming that it belongs to the
same stage as its closest element from xi that appears in the training

-41000

-40000

-39000

-38000

-37000

 1 3 5 7
Li

ke
lih

oo
d

Stages

Patients

Figure 5: Cross-validation likelihood (and standard deviation)
versus the number of stages K in the medical history of the
patients with chronic kidney disease, when we fix the number of
classes C = 2. The likelihood indicates that K = 5 is optimal.

set, i.e., we measure the following cross-validation likelihood:∑
i,j∈It

logP (xij |Θ(ci, ŝij))

where ŝij is the stage of training event closest to xij .

Algorithm initialization. Before executing our algorithm, we must
choose initial values for stage and class assignments. To initialize
{ci}, we divide sequences xi into C different classes uniformly
at random. To initialize {sij}, we split each sequence xi into K
stages at uniform intervals, i.e., for each sequence xi, we set sij =
1 for the first |xi|/K events, sij = 2 for the next |xi|/K events,
and so on. Our method also includes a single hyper-parameter λ.
We considered λ ∈ {1, 0.1, 0.01, 0.001} and found that λ = 1
gives reliable performance across every dataset that we tried.

We note that our fitting procedure can be easily parallelized. Up-
dating Θ can be done in parallel for each class and stage, and updat-
ing stages and classes can be parallelized for each sequence. Using
parallelization with 20 threads, our model could be fit on our largest
dataset (RateBeer) of 2 million total events within two minutes.

EM algorithm. Last, we briefly mention that we also experimented
with an Expectation-Maximization (EM) procedure [20] to learn Θ.
Because xij is generated from a multinomial distribution, the max-
imum likelihood estimate for Θ can be computed in closed form:

Θ(p, q)r =
λ+

∑
i,j Qij(p, q)1{ci = p ∧ sij = q ∧ xij = r}

Mλ+
∑

i,j Qij(p, q)1{ci = p ∧ sij = q}

where Qij(p, q) is a posterior probability P (ci = p, sij = q|xi)
that xij would belong to class p and stage q. This posterior proba-
bility P (ci = p, sij = q|xi) can be computed efficiently using the
Forward-Backward algorithm [20].

We implemented the EM algorithm and compared it to our co-
ordinate ascent method. The EM algorithm requires longer to con-
verge, but it ultimately yields results similar to our coordinate as-
cent method. EM takes more than 1,000 times as long to execute.
For example, it takes two days for EM to finish for the RateBeer
dataset, whereas our method takes just two minutes. Thus, we focus
on the coordinate ascent approach for the remainder of this paper.

3. DATASET DESCRIPTION
For our experiments, we consider five different time-evolving

event sequences ranging from electronic medical records to online
product reviews. We describe the datasets we consider and the def-
inition of event sequences in each dataset. Table 1 provides the
summary of our datasets.

Product reviews. First, we consider online product reviews from
two large beer-reviewing communities (BeerAdvocate and Rate-
Beer) [16]. These datasets contain all reviews from the incep-
tion of the sites (1998 and 2000, respectively) until 2011, con-

taining 1,586,614 reviews from 33,387 users (BeerAdvocate), and
2,924,127 reviews from 29,265 users (RateBeer). We construct an
event sequence for each user from the list of beers that they re-
viewed in chronological order. In this way, a sequence represents
how users choose products (beers) as they develop their own taste
and gain more experience. Since it is unlikely to be fruitful to
model the progression of users who have rated only a few products,
we discard users who have written fewer than 50 reviews. For a
similar reason, we discard beers (which are individual events in our
setting) that have been reviewed by fewer than 50 users. Overall,
we consider 1,084,816 reviews from 4,432 users in BeerAdvocate,
and 2,016,861 reviews from 4,584 users in RateBeer.

Textual memes. Our second dataset consists of quoted phrases
in news articles and blog posts, provided ussing a system called
NIFTY [23]. For each quoted phrase, NIFTY tracks which web-
site posted an article quoting the phrase at what time. We take the
quoted phrases from 2012, amounting to 2 million quoted phrases
from 170,997 websites. The key idea in NIFTY is that a quoted
phrase is a textual “meme”, which represents the propagation of
a very specific piece of information. We define a sequence to be
a chronological list of the online media sources that mentioned a
specific phrase, which represents how the meme spreads in online
media space. In order to focus on memes that drew global attention
and the role of important media sites, we only consider websites
that have mentioned at least 0.5% of all phrases (10,000 phrases)
and phrases that have been mentioned by at least 200 websites. This
means that we consider 1,578,853 mentions for 4,866 phrases.

Medical records. Third, we consider electronic medical records of
patients from Stanford Hospitals and Clinics, accessed via the Stan-
ford Translational Research Integrated Database Environment re-
prository [14]. The dataset spans 17 years with data on 1.8 million
patients including 10.5 million clinical notes. We process the docu-
ments using methods described in [12] to create tuples of (medical
term, patient, timeoffset). We consider patients who have been di-
agnosed with chronic kidney disease at least once. From medical
terms corresponding to other disorders or symptoms mentioned in
the records of these patients, we construct an event sequence of
symptoms for each individual with a diagnosis of CKD. We fo-
cus on patients who have at least 50 medical terms in their history.
Overall, we consider 393,334 terms from 1,835 patients.

Web navigation traces. Last, we consider Web navigation traces
from the online game Wikispeedia [25], where players are given
two random Wikipedia pages and must navigate from one to the
other by clicking as few hyperlinks as possible. We regard each
trace of a game (the Wikipedia pages that the player visited) as an
individual sequence. In this way, sequences represent how a Web
surfer navigates to reach a particular destination. We focus on game
traces that have at least four pages and on pages that appear in at
least 50 game traces, which results in a total of 164,308 page visits
from 29,012 games.

Note that the progression stages in these datasets have different
implications. In beer reviews, progression represents users gaining
experience and developing their own taste [16]; in NIFTY, progres-
sion represents how information grows popular and then fades; and
in patient data, it represents the development of diseases. Finally in
Wikispeedia, progression represents how the players deploy differ-
ent navigation strategies during different stages of browsing.

4. EXPERIMENTS ON EVENTS
Given sequences of events, our model can infer their underlying

classes and the stages of progression. An example of our results is

Dataset Seq. Event N L E(|xi|) M
BeerAdvocate User Product 4,432 1.1m 244.8 5,161
RateBeer User Product 4,584 2.0m 440.0 9,459
NIFTY Phrase Media 4,866 1.6m 349.4 605
Patients Patient Symptom 1,835 0.4m 214.3 124
Wikispeedia Player Webpage 29,012 0.2m 5.7 1,048

Table 1: The definition of sequences and events in the datasets
and the data statistics. N : Number of sequences, L: Total num-
ber of events, E(|xi|): Average length (the number of events)
in each sequences, M : Number of distinct events. m denotes a
million.

shown in Fig. 8, where we show the most frequent events at each
progression stage for two classes. Here, our model provides a sum-
mary of the progression of two classes of beer reviewers during
three stages on BeerAdvocate.

In the next three sections, we perform experiments with our model.
Each of the three sections focuses on three different aspects: indi-
vidual events in the sequences, the progression stages that we learn,
and the classes that we learn. In each of our experiments, we pro-
vide quantitative evaluation first and then analyze the results quali-
tatively. We will show that our model allows us to discover patterns
and classes of temporal progression of online reviewers, informa-
tion diffusion, Web navigation, and diseases.

The first experiment focuses on predicting missing events using
our method. We formulate the task of predicting missing events in
event sequences and evaluate the performance of our model quan-
titatively.

Experimental setup. To measure the accuracy of predicting miss-
ing events, we split each sequence into a training and a test set. We
then fit the model using events from the training set and measure
how accurately the method can predict the events that appear in the
test set. Note that this can be seen as a multi-label prediction prob-
lem where M distinct labels exist. We focus on the accuracy of
predictions when we consider the k most probable outcomes Oij ,
(Oij | = k) for each missing event xij in the test set T

1

|T |
∑
i,j∈T

1(xij ∈ Oij)

where 1 is an indicator function.
We employ two schemes to build our test sets. The first scheme is

to consider the final (most recent) few events; this scheme evaluates
the ability to predict future events in the sequences given events up
to the present. The second scheme is to select a random sample of
events from each sequence; this setting corresponds to the task of
recovering missing events that may have happened in the past.

Predicting events with our model. We describe how we can pre-
dict the events in test set, i.e., how to recommend the top k items
using our model. The idea is to infer the stage and class for each
test event and then find the k most likely items according to the cor-
responding multinomial distribution Θ. Inferring the class is done
using other training events in the same sequence. However, we can-
not infer stages for events in the test set. Thus, for each test event,
we assign it the stage of its chronologically nearest training event.

Baselines. We consider three baseline methods for multi-class pre-
diction where we aim to predict the events in the test set given the
training events.

First, we consider multi-class logistic regression, which aims to
predict the label of missing events using the observed events as fea-
tures. Whereas the training events in this problem contain just lists
of events, logistic regression is a supervised method that requires

Training events Test events

Responses for LRFeatures for LR

?

Figure 6: As a baseline, we train a logistic classifier using train-
ing events. We split the training events into “feature events”
and “response events” so that logistic regression learns to pre-
dict the response events given the feature events.

training examples that have a “response variable” (label) and fea-
tures. Thus, we divide the training events into “feature events” and
“response events” so that logistic regression learns to predict the re-
sponse events given the feature events. Among training events, we
treat events adjacent to the test events as response events, and we
treat the other training events as feature events. We then construct
a feature vector fi ∈ RM using the feature events, and we learn M
logistic regression classifiers for each of M distinct events.

fim = |{xij |xij = m,xij ∈ feature events}|.

After learning the logistic regression classifiers, we aim to predict
the test events. In this case, we treat all training events as feature
events. We then pick the top k labels based on the probability re-
turned by logistic regression.

Our second baseline is a Hidden Markov Model (HMM), as an
exemplar of models based on Dynamic Bayesian Networks (DBNs).
After training the model, we estimate the latent state of the test
event by choosing the state of the chronologically closest training
event. Then, we generate Oij using the k most probable events
from that estimated state. Comparisons against this method show
how much benefit is obtained by modeling classes of sequences
and by assuming that stages increase monotonically; without these
additions, our model would be equivalent to an HMM.

Our third baseline method is a simpler version of our model
where users progress at the same rate through the same set of stages.
We call this baseline Model-U. We assume that all sequences be-
long to the same class, and for each sequence xi, we set sij = 1 for
the first |xi|/K events, sij = 2 for the next |xi|/K events, and so
on. Using these stage assignments, we fit the parameter Θ for the
multinomial distribution for each stage. Comparison against this
model captures the effect of learning progression stages individu-
ally for each event sequence.

Experimental results. Table 2 shows the accuracy when predict-
ing the final events in a sequence, where we output k = 10 most
probable events for each test event (i.e., |Oij | = 10). Among our
three baselines, logistic regression consistently outperforms all the
other baselines (Model-U and HMM) in all datasets. Thus, to con-
serve space, we show the performance of our method and logistic
regression. The left two columns show absolute accuracies, while
the third and fourth column show the relative improvement when
we divide by the accuracy of randomly guessing one of M val-
ues (1/M). The intuition behind relative improvement is that the
overall difficulty of prediction depends on M , the number of pos-
sible event values. Even though the methods achieve low abso-
lute accuracies in the beer data sets, our results here are signifi-
cant as our method performs 100 times better than random guess-
ing. Our method outperforms logistic regression on four datasets
and achieves a relative gain of 130.7 on average, which is 32.4%
higher than logistic regression whose average relative performance
is 102.6. Note that unlike logistic regression, our method is not
specifically designed for classification or prediction; nevertheless,
the progression pattern learned by our model can provide a way to

Absolute Acc. Relative to
random guessing Gain over

baseline (%)Method Ours Baseline Ours Baseline
BeerAdvocate 0.022 0.013 113.5 67.1 69.2
RateBeer 0.013 0.008 124.1 76.4 62.5
Nifty 0.338 0.297 204.5 179.7 13.8
Patients 0.563 0.608 69.8 75.4 -7.4
Wikispeedia 0.135 0.109 141.5 114.2 23.9

Table 2: Performance when predicting the most recent events of
event sequences. Methods output the 10 most probable events.
We compare to the performance of the best baseline (logistic
regression).

Absolute Acc. Relative to
random guessing Gain over

baseline (%)Method Ours Baseline Ours Baseline
BeerAdvocate 0.030 0.014 154.8 72.3 114.3
RateBeer 0.022 0.009 210.1 85.9 144.4
Nifty 0.293 0.224 177.3 135.5 30.8
Patients 0.672 0.676 83.3 83.8 -0.6
Wikispeedia 0.257 0.254 269.3 266.2 1.2

Table 3: Performance of predicting a random set of missing
events from event sequences. Methods output the 10 most prob-
able events. We compare to the performance of the best base-
line (logistic regression).

predict the future events (or missing past events) of the sequences
reliably. The only dataset where our model does not outperform all
baselines is the Patients dataset. A possible explanation is that some
common symptoms, such as “effusion”, appear very frequently across
all patients, and learning progression patterns would be less helpful
for predicting such frequent symptoms.

Table 3 shows the performance when predicting a random sam-
ple of events. Again, our model outperforms the best baseline (lo-
gistic regression) in four datasets. For patient data, our method is
on par with logistic regression. On average, our model yields a rela-
tive improvement of 179.0, which is 58% higher than what logistic
regression achieves (128.7). Since our accuracy measure ignores
how accurately we rank the top k predictions, we tried other val-
ues of k (k ∈ {1, 5, 20}) for evaluation, yet we found qualitatively
similar results in comparing our method against baselines.

5. EXPERIMENTS ON STAGES
Our second set of experiments focuses on the stages of events

that we infer from given event sequences.

5.1 Accuracy of Learning Stages
We begin by evaluating how accurately we can infer progression

stages. For a set of events, we extract “ground-truth” labels for
stages of particular events. We then measure how well the stages
that we infer correspond to these ground-truth stages. Gathering
information for such ground-truth stages is, in general, a challeng-
ing task; however, such information is available for medical events
related to chronic kidney disease, which we study in this paper.

Experimental setup. Chronic kidney disease (CKD) has five stages,
which are explicitly defined by the level of glomerular filtration.
Our data contain explicit events about the CKD stage of patients,
such as “chronic kidney disease stage k” (k ∈ {1, ..., 5}). Us-
ing such explicit events, we can estimate the ground-truth stage of
other medical events (symptoms) by looking at the co-occurrence
between the event and the “CKD stage k” events. For each symp-
tom e in our dataset, we measure the posterior probability Pe(k)
that the event “CKD stage k” happens with the event at the same

Score Ours Baseline
Kendall’s τ 0.810 0.659
Pearson correlation 0.447 -0.007

Table 4: Performance on learning the progression stages of
chronic kidney disease.

visit. Then, we estimate the ground-truth stage s∗e of event e by
the posterior average value of k (i.e., s∗e =

∑
k kPe(k)). After

estimating s∗e , two researchers with a medical degree validated the
values by manual inspection. The first two columns in Table 5 show
a sample of four symptoms and their ground-truth stages.

Given the training data, our model assigns each event to a spe-
cific stage. Thus, we compute the average value of stage assign-
ments ŝe for event e (i.e., ŝe = E[sij |xij = e]). We then compute
the correspondence between ground-truth stage s∗e and the learned
stage ŝe using two standard metrics: Kendall’s τ and the Pearson
correlation coefficient.

Baselines. As a baseline, we consider Model-U that we considered
in Section 4, where we segment each sequence into K stages with
the same duration.

To the best of our knowledge, we are not aware of existing meth-
ods that discover such integer-valued progression stages, which al-
low us to estimate at what point of progression a specific event
would occur. Existing method for learning latent states [8, 19] es-
timate categorical-valued stages of events where no order between
the stages exists.

Experimental results. Table 4 shows the performance of the meth-
ods. In both metrics, we show that our model outperforms the
baseline Model-U, which shows that learning individual progres-
sion stages boosts the accuracy of inferring stages of events. Our
method achieves a Kendall’s τ (i.e., rank correlation) of 0.8, which
means that the stages learned by our model preserve the correct or-
der for the more than 80% of the symptom pairs. Given that Model-
U achieves τ = 0.659, we achieve a relative improvement of 23%.
In terms of Pearson correlation, the improvement over the baseline
is even larger, as the stages learned by the baseline are negatively
correlated with the true stages.

We further investigate the results of our model and Model-U. Ta-
ble 5 gives a few examples of symptoms, their ground-truth stages,
and the estimates by our model and the baseline. Note that our
model’s estimates match ground-truth stages much better than the
baseline. For example, for secondary pulmonary hypertension, which,
in practice, tends to happen at an early stage (stage 2), our model
estimates a stage of 2.65 on average, whereas Model-U estimates a
higher stage of 3.45. For hyperphosphatemia and acidosis, which
happen at a later stage (stage 4), our model estimates the correct
stage very closely (3.99 and 3.97 respectively), while the baseline
estimates different stages, namely 3.71 and 3.21 (respectively).

Given the poor performance of the baseline, we note that se-
quences can have a very different number of events at each stage,
because diseases progress at different rates and within a disease in-
dividual patients progress at different rates. Our results show that
our model can successfully learn the natural history of chronic kid-
ney disease by correcting for such factors.

5.2 Relation between Stage
and Sequence Length

We aim to gain some insight on how sequences evolve by analyz-
ing the stages we learned qualitatively. In particular, we examine
the relation between how quickly a sequence progresses and the
length of the sequence. In other words, we ask the following ques-

Symptom Ground-truth Ours Baseline
secondary pulmonary hypertension 2 2.65 3.45
proteinuria 3 3.19 2.94
hyperphosphatemia 4 3.99 3.71
acidosis 4 3.97 3.21

Table 5: Examples of symptoms and their ground-truth stages.
The stages predicted by our model and the baseline are also
shown. Our method learns stages for symptoms more accu-
rately than the baseline.

 4.4
 4.6
 4.8

 5
 5.2
 5.4
 5.6
 5.8

 0 0.2 0.4 0.6 0.8 1

lo
g

|x
i|

Fraction of the stage

Stage 1
Stage 2
Stage 3
Stage 4
Stage 5

(a) BeerAdvocate

 4.6
 4.8

 5
 5.2
 5.4
 5.6
 5.8

 6
 6.2
 6.4
 6.6

 0 0.2 0.4 0.6 0.8 1

lo
g

|x
i|

Fraction of the stage

Stage 1
Stage 2
Stage 3
Stage 4
Stage 5

(b) RateBeer

 5.4
 5.5
 5.6
 5.7
 5.8
 5.9

 6
 6.1
 6.2

 0 0.2 0.4 0.6 0.8 1

lo
g

|x
i|

Fraction of the stage

Stage 1
Stage 2
Stage 3
Stage 4
Stage 5

(c) Nifty

 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1
 2.2

 0 0.2 0.4 0.6

lo
g

|x
i|

Fraction of the stage

Stage 1
Stage 2
Stage 3
Stage 4

(d) Wikispeedia

Figure 7: The average length (log-scale) of sequences as a func-
tion of the fraction of events elapsed at each stage.

tion: Do sequences that get “stuck” at some stage tend to have more
events? Or, do sequences that go through stages very quickly have
more events? The length of sequence can be of great interest in
many datasets; for example, it represents how actively a user enters
reviews on BeerAdvocate and RateBeer, how popular a phrase is in
NIFTY, or the skill of a player on Wikispeedia.

We examine the relation between the length of a sequence and
the duration (measured by the number of events) that the sequence
spends at each stage. For each sequence xi, we measure the frac-
tion of events hi(s) that the sequence has at stage s (hi(s) =
|{xij |sij = s}|/|xi|). In Fig. 7, we plot the average log-length
of sequences log |xi| as a function of hi(s) for each value of s.

In two product reviewing datasets (BeerAdvocate and RateBeer),
the sequences have the maximum length at hi(s) = 0.25. If users
spend too long at a certain stage (hi(s) > 0.4), or if they move
to the next stage too quickly (hi(s) < 0.1), they tend to produce
fewer reviews. The users producing the most reviews are those who
advance at a moderate rate. In Wikispeedia, we find an increasing
relationship, meaning that players who advance more quickly will
reach the target with fewer steps. In NIFTY, we see that the length
of a sequence (the number of articles that mention a phrase) is not
closely related to stage durations. We observed a similar pattern
in the Patients dataset, yet we did not show the results because the
length of a sequence (i.e., the number of symptoms in the clinical
notes) simply depends on how often the patient visited the hospital.

6. EXPERIMENTS ON CLASSES
Finally, we perform experiments in terms of the sequence cat-

egories that we learn. By inferring a class for each sequence, we
essentially cluster sequences based on their common progression
patterns. We quantitatively evaluate the quality of sequence clusters

Absolute Relative Gain over
baseline (%)

Score Ours K-Means Ours K-Means
Cluster quality 0.161 0.103 9.5 6.1 56.3

Table 6: Performance on clustering Wikispeedia game paths.

that we learn, and then we investigate the meaning of the classes in
more detail.

6.1 Quality of Sequence Classes
We measure the quality of the sequence clusters by using a data-

driven similarity metric between member sequences. For fair eval-
uation, we want to define such a similarity metric in terms of some
external quantity, i.e., in terms of data with which our model is not
provided. Among our datasets, only Wikispeedia provides such
information, which allows us to measure sequence-sequence simi-
larity.

Experimental setup. Given a class assignment ci for each se-
quence xi, we measure the quality of each sequence class by com-
puting the average pairwise similarity between its members [1]. In
particular, we measure the quality Q(p) of class p as follows:

Q(p) = Eci=cj=p[Sim(xi, xj)]

where Sim(xi, xj) is a similarity function for a pair of sequences
xi, xj . In Wikispeedia, we can measure taxonomical similarity be-
tween the pages using Wikipedia categories (e.g., “Alligator” and
“Crocodile” both belong to the category “Insects, Reptiles, and
Fish”). It is natural to notice that games with destinations in the
same category tend to be similar to one another, as players tend
to navigate to similar intermediate pages. Therefore, we define
Sim(xi, xj) to be an indicator function that the last event (i.e., the
destination page) of xi and xj belong to the same category.

Baseline. We compare against the K-Means clustering algorithm
using cosine distances. For each sequence xi, we construct a fea-
ture vector fi ∈ RM by counting the occurrence of events:

fim = |{xij |xij = m}|.

Then, we run K-Means clustering to cluster sequences where we
use the cosine distance, 1 − fi·fj

||fi||||fj ||
, as a distance metric. K-

Means will tend to group sequences with similar sets of events into
the same cluster. The key difference between K-Means and our
model is that our model considers the order of events, while K-
Means ignores them.

We briefly note that we also considered bigram features (i.e.,
features constructed by counting sequences of two events) for K-
means. However, we found that K-Means with bigram features
performed worse than K-Means with fi as defined above. We use
the same number of clusters for K-Means as the number of classes
used by our model.

Experimental results. Table 6 shows the average cluster quality of
the K-Means clusters and our model’s clusters (i.e., classes). On av-
erage, our model’s clusters achieve a cluster quality of 0.16, which
is 56.3% higher than what K-Means clusters achieve (0.103). We
also measure the relative gain over the average similarity between
a random pair of sequences. Our model’s clusters attain similarity
values 9.5 times higher than what we would expect from random
pairs of sequences.

6.2 Analysis on Classes
Our model allows us to learn “classes” of progression stages,

each of which represents a specific pattern of how a particular group

of sequences progress. We now investigate the classes of progres-
sion that we learn in more detail.

Stage-wise similarity between classes. We focus on the similarity
between classes as stages progress. That is, we ask the following
question: As sequences evolve, do the classes converge and have
more homogeneous events? Or, do they diversify? To measure this,
we conduct the following experiment. For each stage s = 1, ...,K,
we measure the similarity between two classes c1, c2 by using the
symmetrized cross entropy Hs(c1, c2) [6] for events belonging to
stage s:

Hs(c1, c2) = H ′s(c1, c2) +H ′s(c2, c1)

where H ′s(c1, c2) is the asymmetric cross entropy:

H ′s(c1, c2) = Exij |ci=c2,sij=s[− logP (xij |Θ(c1, s))].

The cross entropy H ′s(c1, c2) quantifies the uncertainty if we de-
scribe the events at stage s in class c2 using the multinomial distri-
bution for class c1 at the same stage s. The smaller it is, the more
similar the two classes are to each other at stage s.

Fig. 9 shows the average cross entropy between classes at each
stage. Fig. 9(a) shows that the entropy forms a bell-shaped curve
whose maximum is at stage 3. Product reviewers begin with sim-
ilar products, and then diverge from each other during stages 2, 3,
and 4, where users develop their own taste. Finally, they arrive at
similar sets of products that are favored by experts. Fig. 8 shows
two classes that we learn in BeerAdvocate that follow this pattern.
Fig. 8 shows the top seven most frequent products that we learn at
stages 1, 3, and 5, where the classes have some overlap at stage 1,
diverge at stage 3, and finally converge at stage 5.

On Wikispeedia, the cross entropy yields a minimum at stage 2
and then increases. High entropy at stage 1 is natural, as games
begin from random starting points. The minimum cross entropy at
stage 2 corresponds very well to the observation from existing lit-
erature [25] that players tend to navigate to a few “hubs” in their
first move (i.e., at their second page), before moving to more spe-
cific pages depending on their destination. Since players converge
to hubs as their second page, stage 2 exhibits the minimum cross
entropy. Then, game trajectories diversify depending on the topics
of the destination pages.

The cross entropy pattern on Wikispeedia is clearly shown by the
two classes in Fig. 1 (Sec. 1), which shows the five most frequent
pages at each stage for two classes. Frequent pages at stage 1 are
not similar to each other, as the games begin from a random page.
At the second stage, players tend to move to “hubs”, such as “North
America” and “Europe.” Then, red players move to “astronomy”
pages, while blue players move toward “American” pages.

In the chronic kidney disease (CKD) patients data, the cross en-
tropy tends to decrease as the stage increases. This suggests that
patients show diverse symptoms other than CKD during its initial
stages. However, patients tend to share similar CKD-specific symp-
toms as the disease develops. In NIFTY, the classes stay in parallel
without converging or diverging.

Classes in online media. So far, we showed the classes that we
learn on Wikispeedia (Fig. 1) and on product reviews (Fig. 8). We
now investigate the classes of progression that we learn from the
phrases quoted by online media in NIFTY. We examined the se-
quences (phrases) belonging to the same class and observed that
the classes that we learn correspond to different topics, such as
Politics, International, or Entertainment. Table 7 shows the top five
most popular (frequently quoted) phrases in two of the classes that
we learned in NIFTY. We can observe a clear distinction between
phrases about entertainment (top) and political phrases (bottom).

 18

 18.2

 18.4

 18.6

 18.8

 1 2 3 4 5

C
ro

ss
 E

nt
ro

py

Stage

BeerAdvocate
RateBeer

(a) Beer reviews

 14.5

 15

 15.5

 1 2 3 4 5

C
ro

ss
 E

nt
ro

py

Stage

Nifty

(b) NIFTY

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 1 2 3 4 5

C
ro

ss
 E

nt
ro

py

Stage

Patients

(c) Patients

 13.5

 14

 14.5

 15

 15.5

 16

 1 2 3 4

C
ro

ss
 E

nt
ro

py

Stage

Wikispeedia

(d) Wikispeedia

Figure 9: Average cross entropy between the classes at each
stage. The cross entropy shows stage-wise dissimilarity be-
tween the classes.

Class 1

so devastating. we will always love you whitney, r.i.p
joker scene in dark knight rises
the daily show with jon stewart
the girl with the dragon tattoo
snow white and the huntsman

Class 2

this is one small step for a man, one giant leap for mankind
they brought us whole binders full of women
the ecb is ready to do whatever it takes to preserve the euro
unchain wall street! they’re gonna put y’all back in chains
evidence of calculation and deliberation

Table 7: Top five most popular phrases in two classes that
we learn on the NIFTY dataset. The top class corresponds to
phrases about Entertainment, and the bottom one contains po-
litical phrases.

Our discovery in Table 7 suggests that political topics and cul-
tural topics are mentioned by different media sites in a different or-
der. We further examine this by finding the top five most frequent
events (media sites) at each stage. Table 8 shows the results for
stages 1, 3, and 5, and also shows that phrases about entertainment
are first mentioned by independent media, then by broadcasting sta-
tions, and then finally by newspapers. On the other hand, political
phrases are first quoted by newspapers, then by broadcasting sta-
tions, and lastly by forums.

Classes of patients with chronic kidney disease. We finally ex-
amine the classes that we learn from patients with chronic kidney
disease (CKD). We identified two classes in this dataset, with the
primary difference being the rate of occurance of albuminuria. In
one class that we learn, albuminuria occurs extremely rarely, with
probability Θ = 0.01% in any stage, while in the other class al-
buminuria happens much more often (Θ = 0.05%, which is five
times higher). Our findings correspond well with recent findings
[10], which note that about 30% of CKD patients do not suffer
from albuminuria contrary to the common belief that albuminuria
is the hall-mark of screening for and early identification of CKD. In
our analysis, the fraction of patients without albuminuria is 663 pa-
tients out of 1,835 (36%), which is similar to that reported in [10].
The natural history of CKD progression without albuminuria is rel-
atively unknown, and is of active interest in nephrology because it
comprises an injury pattern without classic glomerulosclerosis and

Stone5IPA5cIndia5Pale5AleL
Old5Rasputin5Russian5Imperial5Stout

Stone5Ruination5IPA

Hop5Rod5Rye

Arrogant5Bastard5Ale
9-5Minute5IPA

StageE StageN StageJ

Shakespeare5Oatmeal5Stout

St/5Bernardus5Abt5Ex
Ayinger5Celebrator5Doppelbock

Stone5Ruination5IPA

La5Fin5Du5Monde

Stone5Exth5Anniversary5Bitter5Chocolate5Oatmeal5Stout

Palo5Santo5Marron

De5Proef5Reserve5SignatureAle5cwT5Tomme5ArthurL
Founders5Backwoods5Bastard

Stone5Sublimely5SelfwRighteous5Ale
Ommegeddon

Hop5Henge5Experimental5IPA5

Red5Chair5IPA
Sierra5Nevada5Torpedo5Extra5IPA

Consecration

Ten5FIDY
Hop5Stoopid

Special5Holiday5Ale

Double5Jack

Velvet5Merlin5cMerkinL
Pliny5The5Elder

Lukcy5ENasartd5Ale
Parabola

Cellar5Door
Daisy5Cutter5Pale5Ale

Stone5EJth5Anniversary5Escondidian5Imperial5Black5
IPA

Mongo

Sofie

Figure 8: Top 7 most frequent products in two classes at progression stages 1, 3, and 5 from product reviews on BeerAdvocate.

Initial stage Middle (third) stage Final stage

Class 1

promiflash.de news.yahoo.com startribune.com
thewrap.com nbc.com examiner.com
huffingtonpost.com abc.com latimes.com
examiner.com entertainment.msn.com news.yahoo.com
wonderwall.msn.com fox.com entertainment.msn.com

Class 2

news.yahoo.com abc.com townhall.com
bing.com nbc.com freerepublic.com
reuters.com cbs.com conservapedia.com
guardian.co.uk kwes.com salon.com
washingtonpost.com fox.com breitbart.com

Table 8: Top five most frequent sites at the initial, middle, and
the final stages in the two classes of NIFTY quoted phrases in
Table 7. Entertainment phrases (Class 1) tend to get mentioned
by independent media sites during the initial stage, by TV sta-
tions during stage 3, before being mentioned by newspapers.
On the other hand, political phrases are mentioned by newspa-
pers during the first stage, then by TV during the middle stage,
and finally by forums during the final stage.

affects an estimated 0.3 million people [10]. We intend to analyze
this patient group further in order to elucidate alternative makers
that indicate progression via a non-albuminuria path.

7. RELATED WORK
Analyzing the progression of event sequences has been attempted

in several different settings. One of the most notable approaches
is that of episode mining [2, 11, 17, 18, 26], where one aims to
find subsequences of events (episodes) that many sequences have
in common. Because simply counting occurrences of subsequences
may favor the most redundant ones, the task requires pruning tech-
niques [2, 18], measures of subsequence importance [13, 26], or
probabilistic modeling [11]. However, there are two drawbacks in
these approaches [8, 24]. First, frequent subsequences focus on a
very limited part of sequence data, as they do not tell us which
events tend to happen after or before the chosen subsequences.
Second, counting subsequences is susceptible to observation noise,
which may result in partially observed or slightly permuted se-
quences. Rather than relying on counting, we apply a statistical
approach to model whole event sequences, which allows us to sum-
marize the global picture of sequences [8] while being robust to
random permutations in the data.

The statistical model used in our approach is related to Hidden
Markov Models (HMMs) [5, 7, 19, 22], which assume that ob-
served sequential data arises due to a sequence of underlying latent
states. HMMs have proven to be effective in a variety of applica-
tions, including time series clustering [22], event prediction [11],
and speech recognition [19]. Whereas HMMs assume that any

transition between latent states is possible, we enforce a specific
structure on the transitions in which states are constrained to ad-
vance sequentially. We also introduce “classes” of stages so that
sequences from different classes may evolve differently. We note
that enforcing such a structure in state transitions is key to success-
fully capturing the progression of event sequences, and that HMMs
without such structural constraints fail to model the types of data
we consider in our evaluation (Section 4).

Further related work includes models of temporally varying ma-
trices [9, 15]. For example, [9] considered time-varying bias terms
to improve the accuracy of predicting movie ratings. In addition,
[15] developed a multi-level tensor factorization approach to cap-
ture periodic trends in users’ Web-click behavior. However, these
methods do not focus on the individual development of sequences
(i.e., users)—that is, how individuals evolve as they become more
mature and gain more experience. In this work, we aim to consider
such temporal aspects individually for each sequence.

8. CONCLUSION
In this paper, we developed a model to learn patterns of progres-

sion in time-evolving event sequences by grouping them based on
how they evolve and by segmenting them into progression stages.
Our method can process sequences with millions of events within
a matter of minutes. Experiments show that our method can reli-
ably predict the future events of sequences, accurately segment se-
quences into progression stages, and group sequences with similar
properties into the same class. The progression stages and classes
that we learn in real-world sequential data provide new insights
on how product reviewers develop their own tastes when choosing
products, how users navigate webpages, and how various topics are
covered by different sources of online media.

There are also several avenues for future work. For example,
it would be interesting to consider more sophisticated generative
models of events [16]. On a similar note, allowing sequences to
belong to multiple classes would be an interesting extension. Fi-
nally, our method discovers no structure among the stages of dif-
ferent classes, i.e., each class evolves independently of the others;
it would be interesting to explore whether the method can auto-
matically find the overlaps between the stages of different classes.
Adapting approaches recently proposed for extracting structure from
online news might be particularly promising [21].

Acknowledgements. This research has been supported in part by
NSF IIS-1016909, CNS-1010921, IIS-1149837, IIS-1159679, ARO
MURI, ARL AHPCRC, Okawa Foundation, PayPal, Docomo, Boe-
ing, Allyes, Volkswagen, and Alfred P. Sloan Foundation.

9. REFERENCES
[1] Y. Ahn, J. Bagrow, and S. Lehmann. Link communities

reveal multi-scale complexity in networks. Nature, 2010.
[2] I. Batal, D. Fradkin, J. Harrison, F. Moerchen, and

M. Hauskrecht. Mining recent temporal patterns for event
detection in multivariate time series data. In KDD, 2012.

[3] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest
common subsequence algorithms. In String Processing and
Information Retrieval, 2000.

[4] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation.
Journal of Machine Learning Reserach, 2003.

[5] E. Coviello, A. B. Chan, and G. R. G. Lanckriet. The
variational hierarchical em algorithm for clustering hidden
markov models. In NIPS, 2012.

[6] C. Danescu-Niculescu-Mizil, R. West, D. Jurafsky,
J. Leskovec, and C. Potts. No country for old members: user
lifecycle and linguistic change in online communities. In
WWW, 2013.

[7] P. Felzenszwalb, D. Huttenlocher, and J. Kleinberg. Fast
algorithms for large state space HMMs with applications to
web usage analysis. In NIPS, 2003.

[8] J. Kiernan and E. Terzi. Constructing comprehensive
summaries of large event sequences. ACM Transaction on
Knowledge Discovery from Data, 2009.

[9] Y. Koren. Collaborative filtering with temporal dynamics.
Communications of the ACM, 2010.

[10] H. Kramer, Q. Nguyen, G. Curhan, and C. Hsu. Renal
insufficiency in the absence of albuminuria and retinopathy
among adults with type 2 diabetes mellitus. The Journal of
the American Medical Association, 2003.

[11] S. Laxman, V. Tankasali, and R. White. Stream prediction
using a generative model based on frequent episodes in event
sequences. In KDD, 2008.

[12] N. Leeper, A. Bauer-Mehren, S. Iyer, P. LePendu, C. Olson,
and N. Shah. Practice-based evidence: Profiling the safety of
cilostazol by text-mining of clinical notes. PLoS ONE, 2013.

[13] M. Liu and J. Qu. Mining high utility itemsets without
candidate generation. In CIKM, 2012.

[14] H. P. Lowe H., Ferris T. and W. S. STRIDE–an integrated
standards-based translational research informatics platform.
AMIA, 2009.

[15] Y. Matsubara, Y. Sakurai, C. Faloutsos, T. Iwata, and
M. Yoshikawa. Fast mining and forecasting of complex
time-stamped events. In KDD, 2012.

[16] J. McAuley and J. Leskovec. From amateurs to connoisseurs:
modeling the evolution of user expertise through online
reviews. In WWW, 2013.

[17] D. Patnaik, S. Laxman, B. Chandramouli, and
N. Ramakrishnan. Efficient episode mining of dynamic event
streams. In ICDM, 2012.

[18] J. Pei, H. Wang, J. Liu, K. Wang, J. Wang, and P. Yu.
Discovering frequent closed partial orders from strings. IEEE
Transactions on Knowledge and Data Engineering, 2006.

[19] L. Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. In Proceedings of the
IEEE, 1989.

[20] S. Scott. Bayesian methods for hidden markov models.
Journal of the American Statistical Association, 2002.

[21] D. Shahaf, J. Yang, C. Suen, J. Jacobs, H. Wang, and
J. Leskovec. Information cartography: creating zoomable,
large-scale maps of information. In KDD, 2013.

[22] P. Smyth. Clustering sequences with hidden markov models.
In NIPS, 1997.

[23] C. Suen, S. Huang, C. Eksombatchai, R. Sosic, and
J. Leskovec. Nifty: a system for large scale information flow
tracking and clustering. In WWW, 2013.

[24] N. Tatti and J. Vreeken. The long and the short of it:
summarising event sequences with serial episodes. In KDD,
2012.

[25] B. West and J. Leskovec. Human wayfinding in information
networks. In WWW, 2012.

[26] C.-W. Wu, Y.-F. Lin, P. Yu, and V. Tseng. Mining high utility
episodes in complex event sequences. In KDD, 2013.

