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Abstract
We show that the expected computational complexity of the
Junction-Tree Algorithm for maximum a posteriori inference in
graphical models can be improved. Our results apply whenever the
potentials over maximal cliques of the triangulated graph are factored
over subcliques. This enlarges the class of models for which exact
inference is efficient.

Examples of graphs whose potentials factorize

The graphical models shown above contain only pairwise factors;
triangulating them increases their maximal clique size.

(a) (b) (c)
Analogous cases are common in many applications: (a) a model for
pose reconstruction from [1]; (b) a ‘skip-chain CRF’ from [2]; (c) a
model for deformable matching from [3]. Although the (triangulated)
models have cliques of size three, they factorize into pairwise terms.

The fundamental step in MAP-estimation

In order to pass messages and compute maximum-likelihood states in
graphical models we need to find the index that chooses the maximum
product amongst two lists:

î = argmax
i∈{1...N}

{va[i ]× vb[i ]} .

Although this seems to be a linear time operation, it can be reduced to
O(
√

N) (in the expected case) if we know the permutations that sort va
and vb. Our results arise due to the fact that knowing these
permutations allows us to ignore much of the search space:

 6  2 14 16  9  7 12  8 10  3 11 13  1 15  4  5

99 92 87 81 78 66 53 46 30 26 21 16 12 10  8  6

 3  4  8 11  7 16 13  9  6  2 15 10 12  5  1 14

98 93 85 76 71 70 67 65 63 57 48 42 39 37 26 17

we don't need to search

behind this line

value

index before sorting

value

index before sorting

Our results
The consequences of this result are as follows:

We are able to lower the asymptotic expected running time of the
Junction-Tree Algorithm for any graphical model whose cliques
factorize into lower-order terms.
For any cliques composed of pairwise factors, we obtain an expected
speed-up of at least Ω(

√
N) (assuming N states per node).

For cliques composed of K -ary factors, the expected speed-up
becomes at least Ω( 1

K N
1
K ), though it is never asymptotically slower

than the original solution.
The expected-case improvement is achieved when the conditional
densities of different factors are uncorrelated.
If the conditional densities are positively correlated, the performance
will be better than the expected case.
If the conditional densities are negatively correlated, the performance
will be worse than the expected case, but is never asymptotically
more expensive than the traditional Junction-Tree Algorithm.

Full details of our method can be found on [4].

Results
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experimental

The above plot shows the savings our method obtains (compared to
the linear-time solution) when used to solve

î = argmax
i∈{1...N}

{v1[i ]× v2[i ]× · · · × vK [i ]} .

This saving is obtained whenever we have K th-order factors in cliques
with more than K terms.

Graph matching
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It is possible to specify a model for graph matching that includes
second-order factors within third-order cliques [5]. If we are searching
for a graph of size M withing a graph of size N, the algorithm of [5] has
a running time of O(MN3); our results improve this to O(MN2

√
N). The

above plot shows the actual running time of both methods, which
demonstrates that our approach has minimal computational overhead,
and is beneficial even for very small values of N.
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