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Abstract
In many applications of graph matching, one is in-
terested in finding correspondences that are iso-
morphic (i.e., the topology is preserved), as well
as isometric (i.e., distances are preserved). While
the subgraph isomorphism problem is known to
be NP-complete, the subgraph isometry problem
is polynomial [1]. We show that [1] can be adapted
to find subgraphs that are simultaneously both iso-
morphic and isometric in polynomial time. Fur-
thermore, we use structured learning to determine
the extent to which different types of transforma-
tions are present in our model.

Results
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CMU ‘house’ data (111 frames)
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CMU ‘house’ timing (separation of 90 frames)
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Silhouette data (200 frames)
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CMU ‘hotel’ data (101 frames)
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Pose data (house, 70 frames)
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Pose data (volvo, 42 frames)
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The performance of our method compared to models from [2] and [3]. The im-
ages at right compare our matching results to those from [2]; blue dots denote
correspondences for which only our method was correct; red dots denote cor-
respondences for which only our method was incorrect; gray dots denote that
both methods were incorrect. Running times are shown at top-right.

Our Graphical Model
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(a) (b) (c)
The graphical model (a) from [2] can be used to search for isometric instances
of the graph (b). However, it cannot identify isomorphic (or homeomorphic)
instances, as it does not capture all of the topological constraints in (b). By
replicating some of its nodes in (c), we are able to capture the missing topolog-
ical constraints. The resulting model provably identifies the correct solution
subject to zero noise.

Model Parametrization
We use the structured learning approach of [4] to determine the importance of first-order features (such as Shape-Contexts and SIFT),
second-order features (such as topological constraints and distances), and third-order features. Our graph-matching objective, map-
ping the points in V to those in V ′ is defined as:

g = argmin
f :V→V ′

∑
p1∈G]

〈
Φ1(p1, f(p1))︸ ︷︷ ︸

node features

, θnodes

〉
+

∑
(p1,p2)∈G]

〈
Φ2(p1, p2, f(p1), f(p2))︸ ︷︷ ︸

edge features

, θedges

〉
+

∑
(p1,p2,p3)∈G]

〈
Φ3(p1, p2, p3, f(p1), f(p2), f(p3))︸ ︷︷ ︸

triangle features

, θtri

〉

Our approach is fully-supervised, i.e., we learn Θ = (θnodes; θedges; θtri) from manually labeled correspondences provided by the user.

Graph Isometry and Isomorphism

(a) (b) (c) (d)
Isometry: b ⊆ a, b ⊆ c
Isomorphism: b ⊆ d, c ⊆ a, d ⊆ b
Homeomorphism: b ⊆ a, b ⊆ d, c ⊆ a, d ⊆ a, d ⊆ b
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Weight Vectors
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CMU ‘house’ weights (separation of 90 frames):
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Pose-estimation data (‘volvo’; change in azimuth of 30 degrees):
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CMU ‘hotel’ weights (separation of 90 frames):

︸ ︷︷ ︸
first-order features (shape-context)

We learn a different model for each dataset. The weight vectors we learn
demonstrate the varying degrees of importance of isometry, isomorphism, and
homeomorphism in different applications.
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