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Abstract
We show that the expected computational com-
plexity of the Junction-Tree Algorithm for MAP-
inference in graphical models can be improved.
Our results apply whenever the potentials over
maximal cliques of the triangulated graph are fac-
tored over subcliques. This enlarges the class of
models for which exact inference is efficient.

Graphs whose potentials factorize

The graphical models shown above contain only
pairwise factors; triangulating them increases their
maximal clique size.

(a) (b) (c)

Analogous cases are common in many applica-
tions: (a) a model for pose reconstruction from
[Sigal and Black, 2006]; (b) a ‘skip-chain CRF’ from
[Galley, 2006]; (c) a model for deformable matching
from [Coughlan and Ferreira, 2002]. Although the
(triangulated) models have cliques of size three,
they factorize into pairwise terms.

MAP-estimation
Passing messages in graphical models requires that
we compute ‘max-marginals’, one step of which
requires choosing the maximum product amongst
two (or more) lists:

î = argmax
i∈{1...N}

{va[i]× vb[i]} .

Although this seems to be a linear time operation,
it can be reduced to O(

√
N) (in the expected case) if

we know the permutations that sort va and vb. Our
results arise due to the fact that knowing these per-
mutations allows us to ignore much of the search
space:

 6  2 14 16  9  7 12  8 10  3 11 13  1 15  4  5

99 92 87 81 78 66 53 46 30 26 21 16 12 10  8  6

 3  4  8 11  7 16 13  9  6  2 15 10 12  5  1 14

98 93 85 76 71 70 67 65 63 57 48 42 39 37 26 17

we don't need to search

behind this line

value

index before sorting

value

index before sorting

We find that these permutations can be computed
efficiently whenever the model’s cliques factorize.

Computing max-marginals in cliques that factorize

Graph:

{The complete
graph KM ,

with pairwise
terms}

(a) (b) (c) (d) (e)
Naïve solution: Θ(N5) Θ(N3) Θ(N11) Θ(N6) Θ(NM )
Our algorithm: O(N3

√
N) O(N2

√
N) O(N6

√
N) O(N5) O(N5M/6)

Speed-up: Ω(N
√

N) Ω(
√

N) Ω(N4
√

N) Ω(N) Ω(NM/6)
Some example cliques whose max-marginals are to be computed with respect to the coloured nodes. The
factors are indicated using differently coloured edges (dotted edges indicate pairwise factors).
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(a) (b) (c)
(a) Two lists for which we want to compute argmaxi∈{1...N} {va[i]× vb[i]}. (b) The black squares show the
permutation from va to vb after sorting; the red squares show the products being computed at each step;
the algorithm terminates once the grey box contains an entry. (c) Our results generalize to several lists.
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Left: Performance of our algorithm over 100 trials; the dotted lines show the bounds. Centre: Performance of our algorithm for different correlation coefficients.
Right: The running time of our method on a graph matching experiment over 10 trials [McAuley et al., 2008].
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