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Abstract
We present a graphical model which encodes a series of hierarchical constraints for

classifying image regions at multiple scales. We show that inference in this model can be
performed efficiently and exactly, rendering it amenable to structured learning. Rather
than using feature vectors derived from images themselves, our model is parametrised
using the outputs of a series of first-order classifiers. Thus our model learns which clas-
sifiers are useful at different scales, and also the relationships between classifiers at dif-
ferent scales. We present promising results on the VOC2007 and VOC2008 datasets.

1 Introduction
When classifying and segmenting images, some categories may be possible to identify based
on global properties of the image, whereas others will depend on highly local information;
many approaches deal with this problem by extracting features at multiple scales. However,
segmentation based on local information can be highly noisy unless smoothness constraints
are enforced. These two facts present a problem from a learning perspective: while it is
possible to learn a first-order classifier (i.e., a classifier based on local information) which
incorporates information from multiple scales, learning a classifier which enforces smooth-
ness constraints is an example of structured learning, which appears to have made very little
progress in this area due to the NP-hardness of many smoothness-enforcing algorithms.

In this paper, we will present a tree-structured graphical model that can be used to enforce
smoothness constraints, while incorporating image features extracted at multiple scales. The
tractability of this model will render it easily amenable to structured learning, which we
believe is novel in this kind of segmentation scenario. We will define a loss based on ap-
proximate segmentations of an image (such as bounding boxes), allowing us to exploit the
large amount of information in datasets such as VOC2007 and VOC2008 [7, 8]. We will use
visual features from [6], which appear to exhibit state-of-the-art performance in classifica-
tion problems, and show that their patch-level classification performance can be improved
by structured learning.
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The main contributions in our paper are as follows: firstly, in contrast to many patch-
level segmentation schemes, inference in our model is efficient and exact, allowing us to cir-
cumvent the problems encountered when performing structured learning with approximate
algorithms. Secondly, instead of parametrising our model using image features directly, our
model is parametrised using the outputs of a series of first-order classifiers, and can therefore
easily extend and combine existing first-order classification approaches.

2 Related literature

The idea of partitioning an image into regions at multiple scales is certainly not novel [11,
16]. However, these papers are solely concerned with global categorisation, whereas we also
consider the problem of local region labeling. Furthermore, we shall not use the features
of the image regions themselves, but rather our features are probability scores generated by
existing first-order models, such as those from [6].

The approach of using tree-structured graphical models to incorporate global data into
local segmentation problems (or simply to circumvent the problems associated with grid-
structured models) is also not new; see for example [12]. However, to our knowledge, our
approach is the first to apply structured-learning in this scenario, in order to improve the
classification results of first-order classifiers. Similarly, others use information at an image-
level to guide segmentation at the patch-level [23]. Other papers using similar approaches
(though for different applications) include [9, 20, 25].

Many papers use lattice-structured Markov Random Fields (MRFs) to deal with the prob-
lem of patch-level segmentation. The unary and pairwise terms in such models may be
similar to ours, i.e., the pairwise energy typically denotes a smoothness constraint. Energy
minimization in such a model is NP-hard in the general case, so approximate forms of infer-
ence must be used [30]. There are many examples in this framework, though some important
papers include [4] (α-expansion, αβ -swap), [22] (normalised cuts), and [17] (log-cut). [26]
presents a comparative study of these ideas. We avoid such models as the need to perform
approximate inference is of major concern from a learning perspective.1 Other recent papers
which apply learning to the problem of image segmentation/localisation include [2, 27].

Other authors also use grid structured models, but restrict their potential functions such
that the energy minimization problem can be solved exactly. Examples include boolean-
submodular functions [3, 15], lattice-submodular functions [14], and convex functions [13].
However, the energy functions we wish to use certainly do not fall into any of these cate-
gories.

3 Our model

The nodes (X ) in our graphical model (M ) are similar to the regions used in [11, 16]
(though in those papers, they do not form a graph); these nodes are depicted in Figure 1, and
will be indexed by xl,(i, j) where l is the node’s level in the graphical model, and (i, j) is its
grid position. In fact, a similar graphical model has been suggested for binary segmentation
in [18].

1Some papers make an exception to this rule, such as [5] and [21]. Recently, some theoretical results have been
obtained regarding the performance of structured learning in such cases [10].
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x0,(0,0) x1,(i, j)

x2,(i, j) x3,(i, j)

Figure 1: Nodes on the first four levels of our model. Nodes are indexed by xl,(i, j) where l is
the node’s level in the graphical model, and (i, j) is its grid position.

In words, a node on level k is connected to a node on level k+1, if and only if the regions
corresponding to these nodes overlap. More formally,

xk,(i, j) is connected to
{

xk+1,(2i,2 j),xk+1,(2i,2 j+1),xk+1,(2i+1,2 j),xk+1,(2i+1,2 j+1)
}

(1)

(equivalently, xk,(i, j) is connected to xk−1,(i/2, j/2)). Note that the graphical model is undi-
rected. It is worth noting that there are no connections between nodes at a given level, and as
such we are not enforcing neighbourhood constraints per se. Neighbourhood constraints will
only be enforced indirectly, due to the fact that neighbors are connected via their parents.2

Such a formulation is preferable because it results in a tractable graphical model (it forms a
quadtree), whereas enforcing neighbourhood constraints directly typically requires that we
resort to approximate forms of belief propagation.

The number of levels in this graph will depend on the size of the images in question,
as well as how densely image patches are sampled. In practice, our graph is built to the
maximal depth such that every region contains at least one patch, meaning that the ‘regions’
on the bottom level are essentially ‘patches’. Details are given in Section 5.

3.1 Modeling hierarchical constraints in M

When used in a classification scenario, this model will ensure that nodes on higher levels
(i.e., nodes with smaller values of l) will always be assigned to at least as generic a class
as nodes on lower levels; this is precisely analogous to the notion of inheritance in object-
oriented programming. The simplest inheritance diagram (denoted H ) that we may use is
depicted in Figure 2.

2In other words, we assume that two neighbors are conditionally independent, given their parents.
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Figure 2: The simplest possible hierarchy; the most general possible assignment simply
states that an image region may contain multiple classes; the least general states that a region
does not contain any class (↓ denotes ‘more general than’). Class labels are taken from [7, 8],
though any set of labels could be used.

Note that in H , the class ‘background’ is actually a child of all specific classes; this
is done because our training data may only approximately segment the image (i.e., using a
bounding box). Thus an object that is classified as ‘cat’ on a higher level may be separated
into ‘cat’ and ‘background’ on the level below. In principle, we could add additional classes
to the hierarchy, representing ‘clusters’ of specific classes – for instance, tables and chairs
may only appear in indoor scenes, whereas sheep and horses may only appear outdoors. The
problem of learning such a visual hierarchy has been addressed in [24] (among others), and
incorporating such hierarchies is certainly an avenue for future work.

These requirements will be enforced as hard constraints in M (i.e., assignments which
disobey these constraints will have cost ∞). We will use the notation a≺ b to indicate that a
class a is less specific than b.

4 Probability maximization in M

4.1 Unary potentials
In the most general case, the unary potentials (i.e., first order probabilities) in M are defined
as follows (note that we have suppressed the subscript of the region x for brevity):

E(x;y) =
〈
Φ

1(x,y),θ nodes〉 , (2)

where y∈H is the class label to which the region x is to be assigned, and θ nodes parametrises
Φ1(x,y) – the joint feature map of the node x and its assignment y. The optimal value of
θ nodes will be determined by our learning scheme, described in section 4.5.

In our specific case, we wish to ensure that the class label given to x was given a high
probability according to some first-order classifier (such as that defined in [6]). Specifically,
suppose that such a classifier returns a vector of probabilities Px; then our joint feature map
may be

Φ
1(x,y) = (0, . . . ,Px,y, . . . ,0)︸ ︷︷ ︸

0 everywhere except the yth entry

. (3)

In words, if x is assigned the class y, then the probability given by the first-order model
should be high (weighted by θ nodes

y ).3

3To simplify, E(x;y) = Px,yθy. The formulation in (eq. 3) is used simply to express this as a linear function of
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There are two straightforward generalisations of this model which may be desirable:
firstly, we may wish to learn a separate parametrisation for each level; in this case, we would
have a copy of Φ1(x,y) for each image level, and use an indicator function to ‘select’ the cur-
rent level. The second generalisation would be to parametrise multiple first-order classifiers,
which return probabilities P1

x · · ·PC
x (for instance, features based on histograms of orienta-

tions; features based on RGB statistics, etc.). In this case, our joint feature map will simply
be a concatenation of the individual feature maps defined by each classifier (i.e., it will be
nonzero in exactly C locations). We will use both of these generalisations in our experiments
(see Section 5).

4.2 Pairwise potentials
Similarly, we define pairwise potentials for nodes xk and xk+1 (suppressing the remainder of
the index):

E(xk,xk+1;yk,yk+1) =
〈
Φ

2(xk,xk+1;yk,yk+1),θ edges〉 . (4)

This time the joint feature map Φ2 should express two properties: firstly, the constraints
of our hierarchy should be strictly enforced; secondly, nodes assigned to the same class on
different levels should have similar probabilities (again using the probabilities Pxk and Pxk+1
returned by our first-order classifier).

To achieve these goals, we define the indicator function H as

H(yk,yk+1) =

 ∞ if yk � yk+1,
0 if yk ≺ yk+1,
1 otherwise (yk = yk+1).

(5)

Note that this indicator function enforces precisely the hierarchical constraints that we desire.
It also specifies that there is no cost associated to assigning a child node to a more specific
class – thus we are only parametrising the cost when both class labels are the same. Our joint
feature map now takes the form

Φ
2(xk,xk+1;yk,yk+1) =−H(yk,yk+1)

∣∣Pxk −Pxk+1

∣∣2, (6)

where |p| is the elementwise absolute value of p. Again we may make the same extensions
to this model as outlined in Section 4.1.

4.3 The potential function
The complete maximization function is now defined as

gθ (X ) = argmax
Y

∑
x∈M

〈
(0, . . . ,Px,y(x), . . . ,0),θ nodes〉

+ ∑
xk,xk+1∈M

〈
H(yk(xk),yk+1(xk+1))

∣∣Pxk −Pxk+1

∣∣2,θ edges
〉

, (7)

where θ is simply the concatenation of our two parameter vectors (θ nodes;θ edges), and y(x)
is the assignment given to x under Y (the full set of labels). As the nodes in M form a tree,
this energy can be maximized via max-sum belief propagation (see, for example [1]). The
running time of this procedure is in O(|M ||H |2), where |M | is the number of nodes and
|H | is the number of classes.

θ nodes. Also, we use log(Px,y) in practice, since we are maximizing a sum rather than a product.
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4.4 Loss function
Our loss function specifies ‘how bad’ a given assignment X is compared to the correct
assignment Y . We desire that our loss function should decompose as a sum over nodes and
edges in M (for reasons shown in Section 4.5).

Firstly, we must specify how our training labels Y are produced using existing datasets.
One option is simply to assign the class ‘multiple’ to all regions with which multiple bound-
ing boxes intersect, to assign ‘background’ to all regions with which no bounding boxes
intersect, and to assign a specific class label to all others. Specifically, we will define a loss
function of the form

∆(X ,Y ) =
|X |

∑
i=1

δ (xi,yi). (8)

One such loss is the Hamming loss, which simply takes the value 0 when the region is
correctly assigned, and 1/|M | otherwise, where |M | is the number of regions (or more
formally δ (xi,yi) = 1

|M | (1− I{xi}(yi))).4 In practice, we scale the loss so that each level of
our graphical model makes an equal contribution (i.e., a mistake on level k makes four times
the contribution as a mistake on level k +1).

4.5 Structured learning in M

Structured learning can now be done in the framework described in [29]. Given a training
set Y 1 · · ·Y N , our goal is to solve

argmin
θ

[ 1
N

N

∑
n=1

∆(gθ (X n),Y n)︸ ︷︷ ︸
empirical risk

+ λ‖θ‖2︸ ︷︷ ︸
regularisation term

]
. (9)

Without going into the details of the structured learning algorithm itself (see [29]), we require
that in addition to being able to solve (eq. 7), we can also solve

gθ (X ) = argmax
Y

∑
x∈M

〈
(0, . . . ,Px,y(x), . . . ,0),θ nodes〉+

∑
xk,xk+1∈M

〈
H(yk(xk),yk+1(xk+1))

∣∣Pxk −Pxk+1

∣∣2,θ edges
〉

+∆(X ,Y ), (10)

i.e., for a given value of θ , we can find an assignment which is consistent with our model
(eq. 7), yet incurs a high loss. This procedure is known as ‘column-generation’, and can
easily be solved in this scenario, as long as ∆(X ,Y ) decomposes as a sum over the nodes
and edges in our model (which is certainly true of the Hamming loss).

5 Experiments
We used images from the VOC2007 and VOC2008 datasets to evaluate our model. Specif-
ically, we used VOC2008 for training and validation, and VOC2007 for testing (as testing

4When multiple classes are observed in a single region (i.e., when the correct label is ‘multiple’), no penalty is
incurred if one of these specific classes is chosen.

Citation
Citation
{Tsochantaridis, Hofmann, Joachims, and Altun} 2004

Citation
Citation
{Tsochantaridis, Hofmann, Joachims, and Altun} 2004



McAULEY et al.: HIERARCHICAL IMAGE-REGION LABELING VIA STRUCTURED LEARNING 7

Correct labeling, using bounding-boxes from VOC2007 (1−∆ = 1):

Baseline (with image prior), using no second-order features (1−∆ = 0.566):

Non-learning using second-order features, but assigning equal weight to all (1−∆ = 0.551):

Learning of all features (1−∆ = 0.770):

Colour-code for labels observed in these images:

Figure 3: An example match comparing our technique to non-learning methods. The top
sequence contains the ‘correct’ labeling, as extracted from the VOC2007 dataset (Image
000127; the correct labeling incurs zero loss by definition). The second sequence uses only
first order features (i.e., the most likely assignment is chosen for each region independently);
the image-level classifier is used at the top level, the mid-level classifier is used at the second
and third levels, and the patch-level classifier is used at the bottom level; the fact that many
of regions at the bottom level are incorrectly labeled demonstrates the need for consistency
constraints (see supplementary material for further analysis). The third sequence shows our
method without learning (i.e., assigning equal weight to all features); the low quality of this
match demonstrates that the weights are poorly tuned without learning. Finally, the fourth
sequence shows the performance of our method, which appears to address both of these
issues. A key for the labels used is also shown.
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Level 0 Level 1 Level 2 Level 3
Baseline (see [6]) 0.342 0.214 0.232 0.163
Baseline with image prior (see [6]) 0.342 0.217 0.242 0.169
Non-learning 0.426 0.272 0.137 0.112
Learning 0.413 0.307 0.349 0.444

Table 1: Performance on each level of the graph (on the test set).

data for VOC2008 is not available). This presents a learning scenario in which there is a
realistic difference between the training and test sets. The training, validation, and test sets
contain 2113, 2227, and 4952 images respectively. The validation set is used to choose the
optimal value of the regularisation constant λ .

We extracted SIFT-like features for our model on uniform grids at 5 different scales
[19]. We used the methodology of [6] based on Fisher vectors to extract a signature for each
region. A patch is considered to belong to a region if its centre belongs to that region, and its
overlap with the region is at least 25%. We used three different first-order classifiers, based
on sparse logistic regression: one which has been trained to classify the entire collection of
features in an image (the ‘image-level’ classifier), one which has been trained on bounding-
boxes (the ‘mid-level’ classifier), and one which has been trained on individual patches (the
‘patch-level’ classifier). The baseline to which we compare our method is one which simply
selects the highest score using these individual classifiers (i.e., no consistency information
is to be used). This baseline is similar to what is reported in [6], though it is important to
stress that their method was not optimised to minimize the same loss that is presented here.
We also report the performance using the image prior defined in [6], which rejects labelings
at the patch level which are inconsistent with the probability scores at the image level.

Classification scores for the classes ‘background’ and ‘multiple’ were extracted automat-
ically from the first-order scores: the probability of belonging to the background is 1 minus
the highest probability of belonging to any other class; the probability of belonging to mul-
tiple classes is the twice the product of the two highest probabilities, capped at 1 (so that if
two classes have probabilities greater than 0.5, the product will be greater than 0.5 also).

Structured learning was performed using the ‘Bundle Methods for Risk Minimization’
code of [28]. This solver requires only that we specify our feature representation Φ(X ,Y )
(eq. 3, 6), our loss ∆(X ,Y ) (eq. 8), and a column-generation procedure (eq. 10).

A performance comparison between the learning and non-learning versions of our ap-
proach, as well as the baseline is shown in Table 2.5 Figure 3 shows an example match from
our test set. Table 1 shows the contribution to the loss made by each level of the graphical
model. Finally, Figure 4 shows the weight vector learned by our method. Note that our
model exhibits a substantial improvement over the baseline, and non-learning approaches.6

Additional results are given in our supplementary material (including 3×3 branching in
our tree, different weightings for the class ‘multiple’, and an analysis of our failure cases).

5The non-learning version of the approach just sets θ = (1,1, . . . ,1,1), though any constant value will do.
6Comparison with other methods is certainly difficult, as our loss is neither equivalent to a classification nor

a segmentation error. Note however that in Table 1, we achieve an improvement at both the segmentation and
classification levels. Also, due to the class ‘multiple’, our loss is not equivalent to the criteria normally used to
measure performance on the VOC2007 and VOC2008 datasets.
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Training Validation Testing
Baseline (see [6]) 0.272 (0.004) 0.273 (0.004) 0.233 (0.003)
Baseline with image prior (see [6]) 0.275 (0.005) 0.276 (0.004) 0.238 (0.003)
Non-learning 0.235 (0.006) 0.224 (0.005) 0.233 (0.004)
Learning 0.460 (0.006) 0.456 (0.006) 0.374 (0.004)

Table 2: Performance of our method during training, validation, and testing (for the optimal
value of λ ), compared to non-learning methods. The value reported is simply the proportion
of correctly labeled regions, with each level contributing equally (i.e., one minus the loss).
Values in parentheses indicate the standard error (across all images).
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Figure 4: The complete weight-vector for our model. A separate vector of 22 (= |H |)
weights is learned for each image level, and for each type of classifier (the dashed line
corresponds to zero). This vector has several interesting properties: firstly, the image-level
classifier is given higher importance at the top levels, whereas the patch-level classifier is
given higher importance at the bottom levels (which is consistent with our expectations).
Also, there is a lot of variance between weights of different classes (especially ‘multiple’,
‘background’, and ‘person’), indicating that certain classes are easier to identify at different
scales. Finally, the edge weights have both large positive and negative scores: for instance,
the high weight given to ‘dog’ for the image-level classifier at level 0/1 indicates that the
features between these two levels should be very similar, whereas the negative weight given
to ‘cat’ (at the same level) indicates that the features should be very different.
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6 Conclusion
We have presented a graphical model which efficiently performs patch-level, region-level,
and image-level labeling simultaneously. This model is useful in that it allows us to encode
smoothness constraints for patch-level classification, while still incorporating the important
information at higher levels. We have shown how to apply structured learning in this model,
which has traditionally been a problem for models incorporating smoothness constraints. We
have shown that our model improves in performance over existing models which use only
first-order information. Since our model is parametrised using the probability scores from
first-order approaches, it should be seen as complimentary to existing first-order techniques.
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