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The “rich-club phenomenon” in complex networks is characterized when nodes of higher degree are
more interconnected than nodes with lower degree. The presence of this phenomenon may indicate
several interesting high-level network properties, such as tolerance to hub failures. Here, the authors
investigate the existence of this phenomenon across the hierarchies of several real-world networks.
Their simulations reveal that the presence or absence of this phenomenon in a network does not
imply its presence or absence in the network’s successive hierarchies, and that this behavior is even
nonmonotonic in some cases. © 2007 American Institute of Physics. #DOI: 10.1063/1.2773951$

The so-called rich-club phenomenon in complex net-
works is characterized when the hubs !i.e., nodes with high
degrees" are on average more intensely interconnected than
the nodes with smaller degrees. More precisely, it happens
when the nodes with degree larger than k tend to be more
densely connected among themselves than the nodes with
degree smaller than k, for some significant range of degrees
in the network.1 This is quantified by computing the so-
called rich-club coefficient across a range of k values. The
name “rich club” arises from the analogy that hubs are “rich”
because they have high degrees, and when the phenomenon
is present, they form “clubs” because they are well connected
among themselves.

The relevance of the rich-club phenomenon is that its
presence or absence typically reveals important high-level
semantic aspects of a complex network. For example, its
presence in the scientific collaboration network of a given
research area reveals that the particularly famous and influ-
ential scientists in that field are frequently coauthors with
many other influential scientists in the same field. Similarly,
the absence of the rich-club phenomenon in a protein-protein
interaction dataset possibly reveals that proteins with large
connectivity are presiding over different functions and are
thus possibly coordinating distinct and specific functional
modules.2 The presence of the phenomenon in a power-grid
network may indicate the robustness or stability of the net-
work against blackouts, since several neighboring hubs
would be available to aid a faulty hub in case of an
emergency.

Given a specific network node i, it is possible to define
its successive neighborhoods, i.e., the set of nodes which are
at shortest distances of 1, 2, and so forth from the reference
node i !e.g., Refs. 3–8". The set of nodes at length h from
node i is then said to constitute the hth hierarchical level of
node i. Such nodes can be understood as being linked to the
reference node i through virtual links.5 The number of nodes
at the hth hierarchical level shall henceforth be called the hth

degree of node i. We are now able to define successive de-
grees !or hierarchies" of entire networks.7 That is, each node
in the degree h network is connected to all nodes at its hth
hierarchical level. The successive degrees of a small network
are presented in Fig. 1.

Because of the finite size and diameter of the network,
the hth degree tends to increase up to a peak and then de-
crease as the network is progressively encompassed by the
higher hierarchies. Therefore, the maximum hierarchical
level which can be considered for the hth degree is equal to
the network diameter, i.e., the longest length of the shortest
path among any two nodes in the network. The hth degree
provides a natural means for gradually expressing more glo-
bal aspects of the connectivity around each node. In other
words, while the traditional node degree is an exclusively
local measurement, the degree at successive levels provides
information also about the medium to global scales of the
network.

In this letter we investigate the behavior of the rich-club
coefficient across different hierarchies of a complex network
as the means to obtain more global extensions of that coef-
ficient. We study, in particular, a power-grid network, a sci-
entific collaboration network, and a protein-protein interac-
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FIG. 1. Small network presented at degrees 1, 2, and 3. The hth degree of a
node is now simply its degree in the corresponding hierarchy. That is, edges
in the second and third degree networks simply connect those nodes whose
distances in the first degree network is 2 and 3, respectively. It should be
noted that each of the ten possible edges appears in exactly one of the three
hierarchies.
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tion network. Our results reveal a variety of different
behaviors for the rich-club phenomenon. The presence of the
phenomenon may depend on the hierarchy, and we even re-
port a nonmonotonic behavior for one of the networks in
which the phenomenon appears and disappears as we
progress over the hierarchies.

The rich-club phenomenon may be described as follows:
consider a graph G= !V ,E" representing a complex network
!here we restrict ourselves to simple graphs, i.e., unweighted
graphs with no multiple edges or loops". Let V!k be the set
of vertices with degree larger than k, N!k be the number of
such vertices, and E!k be the number of edges among such
vertices. The so-called rich-club coefficient is given by

"!k" =
2E!k

N!k!N!k − 1"
, !1"

i.e., the fraction between the actual and the potential number
of edges among V!k.

1

This measure clearly reflects how densely connected the
vertices V!k are. One could at first think that the rich-club
phenomenon would apply if "!k" were an increasing func-
tion of k, i.e., if vertices with large degree were more densely
connected among themselves than vertices with low degree.
This was indeed assumed in Ref. 1, where the increasing
dependency of "!k" on k was called the “rich-club
phenomenon.”

However, one must notice that vertices with higher de-
gree will be naturally more likely to be more densely con-
nected than vertices with smaller degree, simply due to the
fact that they have more incident edges. As a result, for a
proper evaluation of this phenomenon we must normalize
out this factor. This point was raised in Ref. 2, which derived
an analytical expression for the rich-club coefficient of un-
correlated large-size networks at high degrees,

"unc!k" %
k,kmax→#

k2

&k'N
, !2"

where kmax is the maximum degree in the network, and
claimed that it should be used to find a normalized rich-club
coefficient, $unc!k"="!k" /"unc!k". "unc!k" is, however, not
properly defined in some cases, such as for heavy-tailed
distributions.2 In practice then the normalization factor is ob-
tained by generating a randomized version of the network

with the same degree distribution. A simple algorithm9 to
achieve this consists in flipping the endpoints of two random
edges and iterating: at each iteration the degrees of the four
nodes involved will remain the same but the edge structure
will change. If sufficiently many iterations are carried out,
the final network will be in some sense a random network
but with the same degree distribution as the initial network.
We then compute the rich-club coefficient for the resulting
“maximally random network,” "ran!k", and use it for finding
the normalized rich-club coefficient, $ran!k"="!k" /"ran!k".
As a result, while $unc!k" gives the rich-club coefficient with
respect to an ideal uncorrelated graph, $ran!k" is a realistic
normalized measure that takes into account the structure and
finiteness of the network. In our simulations we compute
$ran!k" for real-world complex networks across a range of
values of k but also across the hierarchy of networks derived
from the original one.5,7

We have set up a series of experiments on several com-
plex network datasets. The first is related to the power grid of
the western states of the United States of America.10 We also
investigated a scientific collaboration network from the great
area of condensed matter physics2 and a protein-protein in-
teraction network of the yeast Saccharomyces cerevisiae11

!these data sets are available in Refs. 12–14". We have com-
puted the normalized rich-club coefficient across the hth de-
grees of the network for the first four hierarchies. Figure 2
shows the results we obtained. In each graph, the vertical
axis corresponds to the !normalized" rich-club coefficient,
while the horizontal axis corresponds to the hth degree !plot-
ted up to the degree of the largest hub in the corresponding
hierarchy". Here, the random network was obtained by per-
forming (E( /2 edge swaps, repeated 50 times. The rich-club
coefficient was computed after each of these 50 steps. The
error bars in the plot reflect the mean and standard deviation
of these 50 experiments.

The rich-club phenomenon is characterized by an in-
creasing dependency of the normalized rich-club coefficient
on the degree of the network. For the power-grid network,
the phenomenon is present with significant strength for all
hierarchies. For the scientific collaboration network, the phe-
nomenon appears for the first degree network and progres-
sively attenuates along further levels. Finally, the protein-
protein interaction network reveals a particularly interesting
behavior: the phenomenon is absent for the first degree, ap-

FIG. 2. Plots of the normalized rich-
club coefficient for three different net-
works, up to degree h=4. Each plot
shows the normalized rich-club coeffi-
cient #$ran!k"$, plotted against each
value of the hth degree !k". The error
bars reflect the mean and standard de-
viation of 50 experiments !the stan-
dard deviation is approximately zero
in many graphs".
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pears with strength in the second degree, and disappears
again along the higher degrees. This nonmonotonic behavior
of the rich-club phenomenon across hierarchies is a non-
trivial fact that can provide valuable information about the
overall structure of the network.

For the power-grid network, the presence of the rich-
club phenomenon reveals that hubs are highly connected and
thus presumably, there is more stability in the sense that the
duties of faulty hubs may be more easily taken over by
neighboring hubs !since there are many of them". The pres-
ence of the phenomenon across all hierarchies might reveal
the fact that such stability is verified across a range of scales
of the network, suggesting higher resilience. For example,
connections among neighborhoods, cities, and counties may
all exhibit a certain degree of stability. In the scientific col-
laboration network, the phenomenon is present for the first
degree as expected, indicating that renowned scientists in a
given field are likely to have been coauthors in at least one
paper. However, as we move across hierarchies, the strength
of the phenomenon is progressively dissipated. This may be
interpreted as follows: for higher hierarchies, progressively
different scientific subcommunities are being considered, and
in this case, it is unlikely that great scientists from different
subareas have been coauthors in at least one paper. Finally,
we have the results for the protein-protein interaction net-
work. The absence of the phenomenon for a given hierarchy
of this network might indicate that at this hierarchy, key
proteins are specialized and preside over different groups of
proteins. The malfunction of a protein will then in general be
critical. On the other hand, the presence of the phenomenon
may indicate that key proteins act in concert, which suggests
a certain degree of stability in the activities for which they
are responsible. The nonmonotonicity observed then implies
that different patterns of specialization are characteristic of
specific hierarchies instead of being a progressive feature
over hierarchies. For this network, the first degree reveals a
high degree of specialization of the proteins, the second de-
gree reveals much less specialization, and the higher degrees
suggest a more neutral regime. This is a particularly interest-

ing finding because it reveals that patterns of stability or
specialization may alternate as the scale from which an or-
ganism is observed is varied. An interesting question to be
further pursued would then be the investigation of whether
such varying patterns of signatures of specialization or
stability/resilience would correlate with data or prior knowl-
edge of, say, subsystems of the human body which present
varying degrees of resilience to malfunction or disease. Our
results possibly suggest that overspecialization or perhaps
even instability of subsystems of an organism does not nec-
essarily imply instability of the organism in a global scale.
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