CS109B Notes for Lecture 4/21/95

Nondeterministic Automata Looking for Substrings

We can build an NFA to recognize a string that ends in any given substring $a_1 a_2 \cdots a_n$ if we:

- 1. Have a start state s_0 that goes to itself on any input.
 - \square I.e., you can always "guess" that the substring has not yet begun, even if the input is a_1 .
- 2. For i = 1, 2, ..., n, s_{i-1} goes to s_i on input a_i .
- 3. s_n is the accepting state.

Example: Strings that end in */.

- Careful how you use this automaton: when
 it accepts, the job is done and you do not
 continue searching for a later occurrence of
 */.
- We can convert to a DFA as follows:

Class Problem

Describe a NFA that accepts those strings of 0's

and 1's such that the 10th position from the end is 1.

• Note this automaton's input has no "end-marker." At all times it accepts if 10 inputs ago it received a 1.

Now, describe a DFA that recognizes the same language. How many states do your automata have?

Regular Expressions

- An algebraic notation for describing the regular sets (= sets of strings accepted by a FA).
 - □ Note that the subset construction tells us that NFA's and DFA's accept the same sets of strings.
 - \square A set of strings is a *language*.
- The RE's use three operators: union, concatenation, and "closure."
- L(R) = the language represented by RE R.

Why Regular Expressions?

An important notation for expressing characterstring patterns. Used in many UNIX commands, e.g., grep, lex, editors, and (in somewhat different form) the shell.

Operands

- Constants, which are symbols a standing for the language $\{a\}$ consisting of one string; that string is of length 1 and has the symbol a in its lone position.
- Variables, standing for unknown languages.
- The special symbols \emptyset standing for the empty language and ϵ standing for $\{\epsilon\}$ (the set containing only the empty string).
 - \square Note that $\emptyset \neq \{\epsilon\}$.

Concatenation

If R and S are RE's, then RS (= concatenation of R and S) denotes the language $L(RS) = \{rs \mid r \text{ is in } R \text{ and } s \text{ is in } S\}$.

- In general, the language of RS is formed by concatenating a string from R and a string from S in all possible combinations.
- Special case: $a_1 a_2 \cdots a_n$ (concatenation of n RE's, each a single symbol) denotes one-string language $\{a_1 a_2 \cdots a_n\}$.

Union

If R and S are RE's then $L(R \mid S) = L(R) \cup L(S)$.

Example: Let $R = (a \mid b)(ab \mid ba)$. What is L(R)?

- $\bullet \quad L(a \mid b) = \{a, b\}.$
- $\bullet \quad L(ab \mid ba) = \{ab, ba\}.$
- $L(R) = \{a,b\}\{ab,ba\} = \{aab,aba,bab,bba\}.$

Closure

If R is an RE, then $L(R^*)$ denotes $\{\epsilon\} \cup L(R) \cup L(RR) \cup L(RRR) \cup \cdots$.

• That is, the union of zero or more strings chosen arbitrarily from R.

Example: $L((a \mid b)^*) = \text{set of all strings of } a$'s and b's.

Example: $L(a^*b^*) = \text{set of all strings of } a$'s and b's where the a's precede the b's.

Class Problem

Write a regular expression denoting the set of strings of 0's and 1's such that the 10th position from the right end is 1.