CS109B Notes for Lecture 4/12/95

Single-Source Shortest Paths

Given a directed or undirected graphs with non-negative "lengths" of edges/arcs (= numeric labels), and given a *source* node s, find for each node v the shortest "distance" (= least sum of labels) of any path from s to v.

Dijkstra's Algorithm

Grows a region of *settled* nodes whose shortest distance from s is known.

- Inductive computation: For each node v, dist(v) is the length of the shortest path to v that goes only through settled nodes (called a *special* path).
 - If v is settled, then dist(v) is the correct shortest distance to v.

Basis: Initially, only s is settled.

• dist(s) = 0, and dist(v) for other nodes v is either the length of an arc $s \to v$ or ∞ if there is no such arc.

Induction: Find the least dist(v) for any v that is not settled.

- 1. Make v settled.
- 2. For every unsettled node u, see if there is now a shorter special path that goes through v, the newly settled node.
 - \square Compare dist(u) with dist(v) + the length of arc $v \rightarrow u$.
 - \square Replace dist(u) with the latter, if the latter is smaller.

Why Does It Work? (FCS, pp. 504ff)

Intuition: if there were a shorter path from s to v, then it would first leave the settled region to some other node w.

- Thus, dist(w) < dist(v).
- Note needed assumption that lengths are ≥ 0 .

$O(n^2)$ Implementation

There are n-1 "rounds" in which a node is settled. In each round:

- O(n) time to pick the smallest dist among unsettled nodes.
- O(n) time to consider if other dist values need to be lowered.

$O(m \log n)$ Implementation (FCS, pp. 506ff)

Better if $m \ll n^2$ (i.e., the graph is sparse) and adjacency lists are used. Key ideas:

- 1. Keep dist in a priority queue, so we can find and delete the least distance of an unsettled node in $O(\log n)$ time.
 - ☐ Actually, "priority" is lowest-first here, not greatest-first.
 - When we lower dist(u), the position of u in the PQ may change, so it will take $O(\log n)$ time to "bubbleup."
- 2. Count the work of updating successors u of the settled node v more carefully.
 - \square If v has m_v successors, then work is $O(m_v \log n)$ ($\log n$ for bubbling up for each of m_v nodes).
 - $\Box \quad \text{Thus, total update work} = \sum_{v} m_v \log n \\ = O(m \log n).$
 - ☐ That is also the dominant term of the whole algorithm.

Class Problem

Suppose we have already computed dist(v) for all nodes v. Now, we add another arc $y \to z$ with some length. Do we have to recompute all the distances, or can we take advantage of the old distances?