
CS109A Notes for Lecture 2/28/96Binary TreesEvery binary tree has two \slots" for children; itmay have none, either one, or both.� Empty (0-node) binary tree is possible.� Equivalently, a node has left and right sub-trees. Either or both may be null.Data Structure for Binary TreesA node is a record structure; a binary tree is apointer to a node.� NULL pointer represents the empty tree; oth-erwise a tree is a pointer to its root node.� Nodes have �elds leftchild, rightchild.These point to roots of left/right sub-trees, (left/right children).They are null if left/right subtree is NULL(left/right child does not exist).� Other �elds within nodes are possible, e.g.,label, pointer to parent.Structural Induction on Binary Trees� One important di�erence: basis is the emptytree, not a tree of one node.Example:� S(T ): In a binary tree T represented by left-and right-child pointers, there is one moreNULL pointer than node.Basis: If T is the empty tree, then there is a NULLpointer that represents the tree as a whole. Thereare no nodes, so S(T ) holds for T = empty tree.Induction: Let T not be empty and have left andright subtrees L and R.� By the IH, L and R each have one more NULLthan node. \Excess" = 2.1



� However, T also has its root node, so the ex-cess for T is 1, proving S(T ).Binary Search Trees� Labels at nodes, ordered by some < compar-ison operator, e.g., ints, reals, strings.� If a node has label x, then every label in theright subtree is > x, and every label in theleft subtree is < x.� Supports dictionary = set with operationslookup, insert, delete.Running time = O(log n) per operationon the average; n = size of set.� Supports range queries = �nd values betweenupper and lower limits.Example: HowBrown NowCowLookup� Key point: label at root tells us which half ofthe tree we must search, either left or right.Thus, on the average, we cut the size ofthe tree to search almost in half in O(1)time. After average O(log n) steps, weare down to 1 element and are done.� Searching for x at tree T :Basis:1. If T is empty, fail; x is not there.2. If T has label x at the root, then found.Induction: Let T have root label y. If x < y,lookup x on the left subtree of the root; if x > ylookup x on the right subtree.2



InsertionTwo approaches in C:1. Insertion function gets tree (pointer to node)as argument and returns a revised tree includ-ing inserted element.2. Insertion function gets pointer to tree(pointer to pointer to node) as argument and,when it needs to insert, creates a new nodeand makes the slot pointed to by its argumentpoint to the new node.� We'll sketch (1), typi�ed by code in Fig. 5.35;(2) is typi�ed by code of Fig. 5.38 for \delete."Basis:1. If T is NULL create a new node with label xand return a pointer to that node.2. If x at root, no action needed so return T .Induction: Let root of T have label y. If x < y,insert x into left subtree. The left-subtree pointerat the root of T becomes whatever tree is returnedby recursive call. If x > y, do analogously at right.DeletionTo delete x from tree T :Basis: If T is empty, just return T ; if x at root,delete root, �x up T (explained next), and returnthe �xed-up T .Induction: If T has label y at root, delete xfrom left/right subtree if x < y=x > y. Replaceleft/right pointer by returned tree, and return theresulting T .Fixup (Deletemin)� If we need to delete the root of T , if it has oneNULL subtree, just return the other subtree(even if it too is NULL ).� Otherwise, �nd the least element in the rightsubtree (by going down the leftmost path)and move it to the root of T .3


